Advances in Non-Stationary Frequency Modulated Thermal Wave Imaging for Non-Destructive Testing and Evaluation

by G. Dua and R. Mulaveesala*

InfraRed Imaging Laboratory, Indian Institute of Technology Ropar, Punjab, *ravibucareil@yahoo.co.in

Abstract

Among the widely used Non-Destructive Testing and evaluation approaches, InfraRed Thermography has proven to be one of the vital NDT technique due to its inherent capabilities for testing and evaluation of various solid materials. Nevertheless, there are some limitations; depending upon the test approach used, as well as the adopted data processing method. In active approach of infrared thermography, most widely used excitation sources are optical excitation due to its wide area remote heating capabilities with the intention of heat flow into the test specimen. The temperature differences during transient heating over the material is used for subsurface defects detection. Since the heating features of the stimulus sources are well known (duration and it’s amplitude level), they can be considered for quantitative information. However, when a material is heated, the thermal waves penetrate into the material. The waves generally of various amplitudes for chosen band of frequencies or a mono frequency sinusoidal thermal excitation are launched into the specimen during the active heating. This work presents a transient non-stationary thermographic testing technique (which can utilize desired band of frequencies in limited span of time), concerning the assessment of metallic material with artificial defects introduced.

1. Introduction

Thermal Wave Imaging (TWI) is a two-dimensional, remote, non-contact technique of mapping surface temperature distribution which can be properly utilized for Non-Destructive Testing and Evaluation (NDT&E) [1] of materials. Prominent advances and recent studies indicate that TWI can be used in remote characterization of different materials [2-11]. The objective of TWI is to capture transient thermal images of the test specimen under inspection by providing heat energy to generate thermal waves within the specimen. The experiments involve imaging surface and subsurface structures with industrial and medical applications, as well as the quantitative characterization of the thermal properties of materials. This paper focuses on the inspection of mild steel material, which is extensively used in various industries like construction, transportation, oil and gas etc. Safety and demand for quality of in-service products, require thorough testing and reliable monitoring methodology to avoid risky failures. The characterization of materials and of the processes going on in them is of considerable interest for the design of components in order to operate them in a safe and reliable way. Non-stationary thermal-wave imaging methodology has been signifying as a consistent material characterization capabilities in thermographic NDT&E [12-30]. These techniques aid the use of low peak power heat sources in a moderate time compared with the conventionally used pulsed thermography (PT) [5], pulse phase thermography (PPT) [3] and sinusoidal modulated (lock-in) thermography [7,8] technique. For many applications, the technique has proven to be a cost effective alternative to traditional inspection technologies. This paper highlights the capability of Frequency Modulated Thermal Wave Imaging (FMTWI) [12-15] technique in visualizing inclusions present in modeled mild steel sample. In FMTWI the incident heat flux is varied by driving the heat sources with a linear frequency modulated signal (in up chirp form), which causes a similar frequency modulated surface heating over the sample. This helps to introduce desired band of frequencies with significant magnitude into the test sample which improves the test resolution. Further, different transform techniques [25,30] have been implemented on the resulting captured temperature distribution and compared by taking Signal to Noise Ratio (SNR) into consideration.

2. Modelling and Simulation

In this presented work, a 3-Dimensional (3D) Finite Element Analysis (FEA) has been carried out on a mild steel sample using COMSOL Multiphysics. The mild steel sample with six inclusions (Air, Calcium Fluoride (CaF$_2$), Calcium Oxide (CaO), Titanium Oxide (TiO$_2$), Aluminium Oxide (Al$_2$O$_3$) and Magnesium Oxide (MgO)) has been modeled with a finer mesh using 3D tetrahedral elements. The modeled sample is as shown in figure 1. The sample is having dimensions of 150×50×6 (in millimeters). Each inclusion is intentionally kept as an ellipsoid with a-semiaxis:10, b-semiaxis:4, c-semiaxis:2 at a depth of 1 mm from the front surface. The basic properties of mild steel and the introduced inclusions are as given in table 1. The FEA was carried out by imposing a LFM heat flux over the surface of the test object and the corresponding surface thermal response has been obtained. The simulations were carried out under adiabatic boundary conditions, with the sample at an ambient temperature of 300 K.

http://dx.doi.org/10.21611/qirt.2015.0061
Fig. 1. Layout of the modeled mild steel sample with inclusions

<table>
<thead>
<tr>
<th>Table 1. Sample Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Density (Kg/m³)</td>
</tr>
<tr>
<td>Thermal Conductivity (W/m-K)</td>
</tr>
<tr>
<td>Specific Heat (J/Kg-K)</td>
</tr>
</tbody>
</table>

3. Data Analysis

3.1. Frequency Domain Analysis

Suppose \(s(n) \) is a temporal temperature data captured at a predefined rate obtained for a given pixel \((i,j)\) in the field of view, then its Fourier transform \(S(f) \) is given as [3]:

\[
S(f) = \frac{1}{N} \sum_{n=0}^{N-1} s(n) \exp \left(-\frac{j2\pi nf}{N} \right) = \text{Real}(f) + j \text{Imag}(f)
\]

(1)

where \(\text{Real}(f) \) and \(\text{Imag}(f) \) are the real and imaginary components of \(S(f) \) respectively. Further, the phase can be computed as follows [3]:

\[
\phi(f) = \tan^{-1} \left(\frac{\text{Imag}(f)}{\text{Real}(f)} \right)
\]

(2)

3.2. Time Domain Analysis

The time domain correlation coefficient (CC) image is computed from the circular convolution between the chosen reference signal with the captured temperature response given as follows [29,30]

\[
CC(t) = 3^{-1} [\text{Ref}(f)^* \cdot S(f)]
\]

(3)

where \(\text{Ref}(f) \) and \(S(f) \) are the Fourier transforms of the reference temperature signal \(\text{ref}(t) \) and the captured temperature response \(s(t) \). \(3^{-1} \) and \(* \) denote the inverse Fourier transform and complex conjugate operators, respectively. In time domain analysis, the role of linear FMTWI is to compress the energy delivered by the frequency modulated heat flux into a narrow correlation peak which enables imaging with high depth resolution. The result is a reduction in the width of the main lobe and an increase in the amplitude of the CC peak as the supplied energy needs to be unaltered. However, time domain phase image is constructed from the circular convolution of the in-phase as well as quadrature-phase of the chosen reference signal with that of the captured temperature response. It is given as [29,30]

\[
\phi(t) = \cot^{-1} \left\{ \frac{3^{-1} \text{Re}[\text{Ref}(f)^*S(f)]}{\text{Im}[\text{Ref}(f)^*s(f)]} \right\}
\]

(4)

where \(\text{sgn}(f) \) is the signum function. The expression inside the squared bracket is the frequency response of the quadrature reference signal. The quadrature of the reference temperature response is obtained using Hilbert Transform.
(HT) and the frequency response is obtained through Discrete Fourier Transform (DFT). The process is explained using a block diagram shown in figure 2.

Fig. 2. The processing approach adopted for construction of time domain correlation co-efficient and phase contrast images [29,30].

4. Results and Discussion

The modeled mild steel sample with inclusions is simulated using controlled frequency modulated heat flux with frequency sweeping from 0.01Hz to 0.1Hz in 100 s. The resulting temporal temperature response is obtained and further processed by applying different data analysis techniques as mentioned above. Results so obtained are shown in figure 3. The conventional frequency domain image is shown in figure 3 (a), whereas the time domain phase image is shown in figure 3 (b). The time domain correlation coefficient image is shown in figure 3 (c). It clearly indicates that materials with different thermal properties gives different thermal contrast, therefore can be easily utilized for identification of sub-surface feature characteristic and its properties. Further, Thermal contrasts have been quantified in terms of the materials Signal to Noise Ratio (SNR) computed using:

$$ SNR = 20 \log \left(\frac{\text{Mean of the inclusion region} - \text{Mean of the mild steel region}}{\text{Standard deviation of mild steel region}} \right) $$

SNRs have been computed for different inclusions in the mild steel sample for the data processed with different analysis techniques. The value of SNRs are as given in table 2.
Table 2. Signal to Noise Ratio

<table>
<thead>
<tr>
<th>Transform Technique</th>
<th>SNR in Decibels (dB) for different inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (a)</td>
<td>CaF₂ (b)</td>
</tr>
<tr>
<td>FFT Phase</td>
<td>91.2794</td>
</tr>
<tr>
<td>CaO (c)</td>
<td>81.8481</td>
</tr>
<tr>
<td>TiO₂ (d)</td>
<td>77.9304</td>
</tr>
<tr>
<td>Al₂O₃ (e)</td>
<td>76.7255</td>
</tr>
<tr>
<td>MgO (f)</td>
<td>47.8721</td>
</tr>
<tr>
<td>Time Domain Phase</td>
<td>96.4528</td>
</tr>
<tr>
<td>136.8374</td>
<td>128.5947</td>
</tr>
<tr>
<td>TIME Domain Correlation</td>
<td>126.8325</td>
</tr>
<tr>
<td>115.3984</td>
<td>126.0722</td>
</tr>
<tr>
<td>96.4528</td>
<td>99.4589</td>
</tr>
<tr>
<td>98.8497</td>
<td>67.7099</td>
</tr>
<tr>
<td>64.1536</td>
<td>64.1536</td>
</tr>
</tbody>
</table>

REFERENCES

