Acoustic wave focusing in complex media using Nonlinear Time Reversal coded signal processing

Serge DOS SANTOS 1*, Zuzana DVORAKOVA 1,2, Martin LINTS 1,3, Vaclav KUS 4, Andrus SALUPERE 3, Zdenek PREVOROVSKY 1*

(* Full Member of the Academia NDT International)

1 INSA Centre Val de Loire, campus Blois, UMR 930 « Imaging and Brain », Inserm, University of Tours, 3, Rue de la Chocolaterie CS 23410, F-41034 BLOIS cedex, France
2 Institute of thermomechanics,
3 Institute of Cybernetics at Tallinn University of Technology
Tallinn, Estonia
3 Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering,
Brehova 7, CZ-11519, Prague 1, Czech Republic

serge.dossantos@insa-cvl.fr

Serge Dos Santos et al, 11th European Conference on NDT, Prague 8-10 oct, 2014
Content

- **Introduction**
 - Principle of the Bi-modal Time Reversal (TR) based NEWS technique
 - Future trends for NDT (Non Destructive Testing) and potentiality for medical imaging

- **Methods and Materials**
 - The human tooth as a reverberating complex media
 - The nonlinear ultrasound (US) signature as an indication of degradation
 - Nonlinear Signal Processing: Pulse Inversion (PI) method

- **Results**
 - TR-NEWS used for tooth and skin applications: experimental set-up
 - Polar imaging of internal human tooth with TR-NEWS

- **Conclusions, Discussion and Perspective**
Advantage of ultrasonic nonlinear waves

- How to detect smaller cracks:
 - Increase the frequency of ultrasound ...
 - consequence: increase of attenuation ...
- Solution:
 - ... increase the ultrasonic power ...
 - consequence: nonlinear effects are created (harmonics)
- Advantage:
 - « Natural » increase of the frequency thanks to harmonics
Time Reversal for NEWS

M. Fink, France
IEEE Trans on UFFC (1992)

K. Van Den Abeele, P.A. Johnson, and A. Sutin.

- NEWS: Nonlinear Elastic Wave Spectroscopy
 - What is the nonlinear signature due to damaged area?
 - A high level of ultrasound is needed
 - How to localize sources of nonlinearity?

- Time Reversal
 - Retrofocused signal with high level of ultrasound (for NL effects)
 - Temporal focusing: reconstruction of coherent tone-burst signals
 - Spatial focusing: analysis on localized point: the focused region
 (practically measurements are done with laser interferometers)
Nonlinear Acoustics and TR

- TR: Time Reversal (M. Fink, France). It combines advantages:
 - of increasing the acoustic pressure stress localization
 - The local evaluation of the medium (which could be highly nonlinear) using global complex and dispersive response of the whole medium (which is mostly linear)

- It assumes a powerful symmetry between sources and receivers: reciprocity
 - Localized power!
 - Power not localized!
Multi-modal TR-NEWS: the objective!
Nonlinear Time Reversal for localization of nonlinear sources

Nonlinear Time Reversal in a chaotic system for extraction of localized nonlinear electromagnetic signatures

Synopsis: Alice and Bob Go Nonlinear

Perspectives: symbiosis between Time Reversal Techniques, chaotic waves, nonlinear dynamics and NDT of local activity

New area of Research and New innovations: cryptography and secured and coded communications
Coded Signal processing from Medical applications and Symmetry Analysis
Nonlinear Signal Processing: Symmetrization of Excitation with Pulse Inversion (PI)

Nonlinear medium

\[y(t) = NL[x(t)] = N_1 x(t) + N_2 x^2(t) \]

Nonlinear signature

Experiments: measurements in the time domain!!
Symmetry associated to chirp-coding

\[-1\]
\[y(t) = c(t) * h(t) = \int_{\mathbb{R}} h(t - t') c(t') dt',\]

- linear response of systems

- chirp-coded response and correlation

\[1\]
\[\Gamma(t) = y(t) * c(-t) = h(t) * c(t) * c(-t),\]

\[\Gamma_c(t) = c(t) * c(-t) = \delta(t)\]

\[y_{TR}(t) = \Gamma(-t) * h(t) = \Gamma_h(-t),\]

TR-NEWS

Nonlinear signature extraction with Pulse Inversion : addition of responses

Nonlinear signature extraction with Chirp coded Pulse Inversion : substraction of responses
Pulse Inversion (PI) method
Inversion group (C_2) interpretation

\[y(t) = NL[x(t)] = N_1 x(t) + N_2 x^2(t), \]

where N_1 and N_2 are respectively linear and second order coefficients. If $X_E = x(t)$ and $X_I = -x(t)$ are applied separately to (S), one can extract N_1 and N_2 using the respective nonlinear response $Y_E(t)$ and $Y_I(t)$ with:

\[N_1 = \frac{Y_E(t) - Y_I(t)}{2x(t)}, \quad (2) \]
\[N_2 = \frac{Y_E(t) + Y_I(t)}{2x^2(t)}, \quad (3) \]

Extension for the 3rd order nonlinearity

Multiplication table (left) and character table (right) for the point group C_2. The top row of right table labels the group elements, and the first column the one-dimensional irreducible even A_g and odd A_u representations. E is the identity, I denotes inversion or rotation by an angle π.
Higher order Pulse Inversion (PI) method : ESAM

\[y(t) = NL[x(t)] = N_1 x(t) + N_2 x^2(t) + N_3 x^3(t), \]

C3 character table and irreducible representation

\[
\begin{array}{c|ccc|c|ccc|c|}
C_3 & E & \epsilon & \epsilon^* & C_3 & E & \epsilon & \epsilon^* \\
\hline
E & E & \epsilon & \epsilon^* & A_1 & 1 & 1 & 1 \\
\epsilon & \epsilon & \epsilon^* & E & A_2 & 1 & -1 & -1 \\
\epsilon^* & \epsilon^* & E & \epsilon & E_1 & 2 & -1 & 0 \\
\end{array}
\]

Multiplication table (left) and character table (right) for the point group \(C_3\). \(E\) is the identity, \(\epsilon = e^{2i\pi/3}\) denotes rotation by an angle \(2\pi/3\), \(\epsilon^* = e^{-2i\pi/3}\) denotes rotation by an angle \(-2\pi/3\).

\[
\Rightarrow \text{ New « symmetrized » excitations}
\]

Application of ESAM signal processing

FATIGUE TESTS WITH NLTRM – ESAM on the STEERING ACTUATOR BRACKET

9th LOADING PERIOD (125 000 - 135 000 cycles)

AE left-clusters

Damage of loading pinhole is one AE source cluster

AE right-clusters

NLTRM – config. 1

NLTRM – config. 2

ACADEMIA NDT International
Durban, 17 April 2012

Nonlinear ultrasonic time reversal mirrors in NDT, Zdenek Prevorovsky, Czech Academy of Science, Academia NDT lecture at WCNDT, Durban (2012)

Serge Dos Santos et al, 11th European Conference on NDT, Prague 8-10 oct, 2014
TR-NEWS imaging of the tooth

chirp-coded polar image of the tooth
B-scan echodentography

Imaging of the tooth before focusing

TR-NEWS polar image of the tooth

Imaging of the tooth after focusing

TR-NEWS polar image after focusing

Nonlinear signature

Future work: include tooth topography data with other modality

Efficiency of TR-NEWS in complex medium:

reverberant medium is an advantage!!
Strategies for TR-NEWS focusing improvement and nonlinear measurements: chaotic transducer

For TR-NEWS based focusing, “long time coda” is needed:

- Reverberation (or dispersion or memory) should be present in the “transducing device”
- Chaotic cavities should be preferred in order to reduce “symmetry” effects

Bou Matar et al., On the use of a chaotic cavity transducer in nonlinear elastic imaging, Applied Physics Letters 95, 141913 2009
Strategies for TR-NEWS focusing and nonlinear measurements: the phononic transducer
Results on the TR-NEWS focusing

The phononic cavity decreases the "focusing properties" of the compressed signal.

Localisation and classification

Classification and localization of bubbles and Ultrasound Contrast Agent (UCA) in bio-medium

Experimental setup – 2 parts:

- 3 different sources of nonlinearities in water tank are measured – small bubbles, big bubbles and Ultrasound Contrast Agent (UCA) flow in a capillary
- small bubbles – measured at 4 different positions \([0,0], [10,0], [10,10] \) and \([0,14]\)

Serge Dos Santos et al, 11th European Conference on NDT, Prague 8-10 oct, 2014
Classification of nonlinear signatures

Nonlinear and localized signatures of material can be classified.

TR-NEWS signal

Classification Clusters

φ-divergence parameters of measured signals

Result of the Fuzzy divergence method
TR-NEWS for skin US imaging

- NDT
- Degradation ⇔ memory of the material (memristor for NDT?)
- Ageing ⇔ memory of the skin (see Leon Chua lecture)
TR-NEWS for skin (PLET project)

S. Dos Santos et al, Viscoelastic and hysteretic properties of the skin: Acousto-mechanical evaluation using nonlinear time reversal imaging, to be presented at IFSCC, Oct. 2014, Paris
Nonlinear acoustics for complex composites structures

- Complex composite: 144 layers!
- Dispersive properties ...
- Damaged composite: nonlinear behavior ...
- Nonlinearity + dispersion = soliton propagation ...

M. Lints et al (see presentation Th.D.4.5)
Delayed TR-NEWS for solitonic excitation
Strategies for TR-NEWS focusing improvement and nonlinear measurements: memristive transducer

Figure 2: Principle of the memory based transducer. Putting memory into transducer induce the possibility of breaking any symmetry in the excitation device leading to a unambiguous superfocusing properties needed for TR-NEWS based experiments[12, 13]

Nonlinear Time Reversal and complex medium
2D simulations: ISNA17, 2005

A. Sutin et al., ISNA17, PennState, 2005

3D simulations: T. Goursolle et al., JASA 2007

TR-NEWS
Conclusion

- Some TR-NEWS innovations have been presented for ultrasonic testing (UT) of nonlinear, complex media and complex pattern
 - The concept of “focused TR-NEWS” using a focused sensor as a receiver
 - Surface TR-NEWS method could be investigated for volumic tomography of complex media
 - Experiments with 2D and 3D phononic cavities as a reverberant media
 - Consequently, TR-NEWS is better for complex medium and does not work for “regular” ones!
 - New TR-NEWS device (40 MHz)
 - New perspectives for Medical Imaging and NDT in complex samples using coded solitonic excitations (see Martin Lints paper in these conference)

- Perspective
 - Practical implementation of these results for complex media, like bubbles localisation using statistical analysis
 - Potential applications for underwater detection of nonlinear scatterers like bubbles (seagrass, diver, etc.) and damage and ageing signature of human organs (bone, skin, brain)
Acknowledgements and Collaborations

- **Developpement of TR-NEWS based approach in NDT**
 - **USA**: A. Sutin and A. Sarvazyan (TR-NEWS experimentation for NDT and bubbles)
 - **Belgium**: K. Van den Abeele (AERONEWS EU project, TR-NEWS methods for cracks)
 - **Spain**: V. Sanchez Morcillo (TR-NEWS optimization of focusing with phononic cavities)
 - **France**: O. Bou Matar (TR-NEWS simulations), V. Gusev (Nonlinear Acoustics)
 - **Czech Rep**: Z. Prevorovsky and V. Kus (TR-NEWS and AE, ESAM-DORT signal processing)
 - **Germany**: M. Kreutzbruck (TR-NEWS for CFRP, multi-modality)
 - **UK**: T. Stratoudaki (bimodality laser/US for TR-NEWS, invited researcher)
 - **Spain**: V. Sanchez Morcillo (Nonlinear acoustics /nonlinear optics, inv. researcher)
 - **Latvia**: V. Kurtenoks (TR system instrumentation; electronics)
 - **USA**: Leon O. Chua (memristive effects; nonlinear systems; signal processing)
 - **Estonia**: A. Salupere, M. Lints (solitonic TR-NEWS)

- **U930 « Imaging and Brain », Inserm-Université de Tours (GIP Ultrasons), GREMAN UMR 7347 CNRS-CEA**

- **Concil Members of Academia NDT International** (www.academia-ndt.org)
 - Dr. G. Nardoni (President), Prof. Vladimir V. Klyuev, Dr. Baldev Raj, Prof. Vjera Krstelj
 - Dr. Ing. Rainer Link, Dr. Sotirios J. Vahaviolos
Thank you!

Questions!

 serge.dossantos@insa-cvl.fr