Application of ultrasonic guided waves for investigation of structural components of tidal power plants

R. Raišutis¹*, R. Kažys¹, E. Žukauskas¹, L. Mažeika¹, A. Jankauskas¹, K. Burnham²

1 - Ultrasound institute of Kaunas university of technology, Studentu st. 50, Kaunas LT-51368, Lithuania
renaldas.raisutis@ktu.lt

2 - TWI - World Centre for Materials Joining Technology Granta Park, Great Abington, Cambridge CB21 6AL, UK

NDT&E of Composite Materials CompNDT 2011
The example of tidal power plant
(PS 100)

In service

http://www.itpower.co.uk/node/151
The example of tidal power plant (Pulse tidal PS1200)

http://www.itpower.co.uk/Projects/UK?view=955

Inspection of so complex object is a great challenge for conventional non-destructive testing (NDT) techniques!
The objective

To determine the most critical regions of hydrofoil to be tested, to select the modes of ultrasonic guided waves to be used and to determine the parameters of their excitation, propagation along the sample and interaction with non-homogeneities.
The work done

- The multi-layered composite structure and the critical regions of hydrofoil to be tested were defined;
- The modes of guided waves propagating in the hydrofoil are identified and their parameters are estimated;
- The mock-up sample of hydrofoil was investigated.
The expected types of possible defects inside hydrofoil

- Delamination between the skin and the adhesive layer;
- Delamination between the main spar and the adhesive layer;
- Adhesive joint failure between the skins along the leading and the trailing edges;
- Internal multiple delaminations or splitting between the layers of the skin and the main spar.
The expected defects (hydrofoil)

- Skin (GFRP)
- Main spar (CFRP)
- Foam-filled

Internal delaminations inside skin or main spar

Delamination skin-adhesive-main spar

Monitoring directions using ultrasonic guided waves

Leading edge

Trailing edge

Upper shell

Lower shell
The optimum arrangement of transducers (along the sample)
The optimum arrangement of transducers (across the sample)

Measurements across the sample, but it is proposed to avoid the boundary between the skin and the main spar.
Calculated dispersion curves in skin (SAFE)

Total thickness of multi-layered GFRP composite is 4 mm
Calculated dispersion curves in skin + main spar (SAFE)

Total thickness of multi-layered GFRP+CFRP composite is 40 mm

Interpretation of the multiple modes is very complicated!
Experimental investigation of the mock-up sample of the hydrofoil

Measurements on the shell base (GFRP):

• Duration of excitation pulse: 11 µs;
• Scanning step: 1 mm.
Investigation of the shell base (GFRP) only

B-scan

2D FFT and SAFE

Selected region for 2D FFT calculation
Experimental investigation of the mock-up sample of the hydrofoil

- Duration of excitation pulse: 11 µs;
- Scanning step: 1 mm.

Measurements on the spar cap (CFRP):
Experimental investigation of the mock-up sample of the hydrofoil

B-scan

2D FFT and SAFE

Selected region for 2D FFT calculation
Conclusions

- The geometry, material type, properties and the critical regions of the hydrofoil that should be tested were identified;
- The testing of the main spar should be performed in longitudinal direction and other parts of hydrofoil along longitudinal and perpendicular directions;
- The propagating modes in the complicated structure of the hydrofoil (multi-layered, CFRP, GFRP) were investigated by numerical modelling (SAFE) and experiments;
- It was estimated, that in order to use the fundamental modes, the frequency of operation below 100 kHz should be used for inspection of the skin and even lower for inspection of the main spar.
Acknowledgement

The part of this work was sponsored by the European Union under the Framework-7 project Tidalsense “Development of a condition monitoring system for tidal stream generator structures” (www.tidalsense.com).
Thank you for attention!

Address: Studentų 50, LT-51368 Kaunas, LITHUANIA
Phone: +370-37-351162,
Fax: +370-37-451489,
E-mail: ulab@ktu.lt
Home page: http://www.ultrasonics.ktu.lt/