An Inverse Problem for Grain Size in Low Carbon Steels and Ultrasonic Measurements

Alexander POPOV
Solid Mechanics Department, Institute of Mechanics at the Bulgarian Academy of Sciences, Sofia, Bulgaria, phone 0359 02 979 64 77, e-mail: alpopov@abv.bg

Abstract
Low carbon steels are considered in this article. It is often the case in practice to determine the average size of the grains \(D \) in them [1]. The non-destructive evaluation /NDE/ of \(D \) [2] is interest.

For a sample from normalized carbon steel, \(\overline{D}, \text{mm} = 0.022 \pm 3\% \) by metallographic analysis is determined.

For it, they are measured \((V_L; V_T) \) [2,4]. With the ZEROIN [5] program, the NDE of \(\overline{D}, \text{mm} \) by measured \((V_L; V_T) \) is calculated.

Keywords: Inverse Problem, Grain Size, Low Carbon Steel, Ultrasonic Measurement

1. Introduction

The carbon steels in machine building are the most commonly. It is known [1,3,4] that the relationship \(\sigma_{YS}(E) \) exists, where \((E; \sigma_{YS}; \ldots) \), where \(E = E(V_L; V_T) \) – Young modulus \(\sigma_{YS} = \sigma_{YS}(\overline{D}) \) – yield stress. Here \((V_L; V_T) \) – velocities of longitudinal and transversal ultrasonic waves, \(\overline{D} \) – average of ferrite grains. This is the direct problem.

An interest is the inverse problem, namely “Determining the average size of the grains \(\overline{D} \) in carbon steels by measuring of \((V_L; V_T) \)”.

2. Theory

2.1. Relationship \(\sigma_{YS}(D) \)

The semi-empirical relationship of Hall-Petch is considered [3]

\[
\sigma_{YS} = \sigma_0 + K_y (\overline{D})^{-1/2}
\]

where \(\sigma_{YS} \) – low limit of yield stress (\(\sigma_0 = 72MPa; K_y = 23.9MPa\text{mm}^{1/2} \) [3] for low carbon steels).

2.2. Regression model \(\sigma_{YS}(E) \)

For carbon steel with a carbon content (0.10 to 0.35) % C, dependence \(\sigma_{YS}(E) \) was obtained. The graphics is shown in Fig.1. It is shown 95% confidence intervals for the probability measurements.
Fig. 1. Polynomial regression for carbon steels, where $YS\, MPa = \sigma_{YS} MPa$

It can be seen, that the trend of experimental data is approximated by polynomial regression (PR), (2).

$$\sigma_{YS} = \sum_{K=0}^{2} \beta_{K} E^{K}$$

(2)

3. Inverse Problem for \overline{D}, mm

After equalizing (1) and (2), the equation \overline{D}, mm is obtain

$$K_{y} (\overline{D})^{n} + \psi (V_{L}; V_{T}) = 0$$

(3)

where $n = -1/2$; $\psi (V_{L}; V_{T}) = \sigma_{0} - \sum_{K=0}^{2} \beta_{K} E^{K}$; $E = \frac{3 - 4(V_{T}/V_{L})^{2}}{1 - (V_{T}/V_{L})^{2}}$ [4].

The parameters in equation (3) are explained in dependence (1) and Fig.1. The parameters in (3) $\{K_{y}; \sigma_{0}; \beta_{0}; \beta_{1}; \beta_{2}\}$ are explained in dependence (1) and Fig.1. The equation (3) is non-linear. An effective method for its solution is the method of the bisection (Newton, 1669). The method is implemented with the algorithm ZEROIN (Brent, 1973) [5]. This algorithm combines the reliability of slotting with the asymptotic speed of the the souls method. The number of iterates for the implementation of the algorithm is $N \sim \log_{2}[(b-a)/TOL]$ where $TOL \sim 10^{-6}$ – uncertainty and $(a;b)$ is the root search interval of the equation (3).

4. Equipment

For ultrasonic measurements the following equipment shall be used: Digital ultrasonic flaw detector SITESCAN 150S, Sonatest, England, transducers 5 MHz, with X-cut and Y-cut of piezo-plates, Panametrics, USA. Calibration block $(V'_{L} = 5.93 \, mm, \, \mu s)$, Sonatest, England, Digital micrometer Digimatic, Mitutoyo, Japan. With this micrometer, measurements are made with accuracy $\pm 0.5 \, \mu m$.

117
5. Experiment

A sample of steel grade 20, normalized, with dimensions \(h = 25 \text{ mm}, a = 20\text{mm}, b = 150\text{mm} \) are measured. The velocities \((v_L; v_T)\) in the sample according to [4] are measured. The results are \((v_L = 5.92 \pm 0.03; v_T = 3.25 \pm 0.015 \text{ mm/μs})\). Transducers with frequency 5MHz, X-cut and Y-cut of piezoplastins are used. The value \(D_{mm}\) is determined by the measured velocity \((v_L; v_T)\) and the solution of (3), received by the ZEROIN program, at a given root interval \([a=10^{-6}; b=0.05]mm\).

A metallographic shliph is made. The reference value \(D_{mm}\) for the metallographic microscope at 100x magnification is determined. The results of measured are given in Table 1.

<table>
<thead>
<tr>
<th>The calculated value / NDT evaluation /</th>
<th>The reference value / Metallographic evaluation /</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{mm} = 0.020218)</td>
<td>(D_{mm} = 0.022 \pm 3%)</td>
</tr>
</tbody>
</table>

The calculated value for \(D_{mm}\), is by five real orders because in ZEROIN program the uncertainty is \(TOL \sim 10^{-6}\). The number of iterations is \(\sim 117\) (in this case the time of work of the program ZEROIN is \(\sim 5\)s). The error of NDE of \(D_{mm}\) is 0.68%.

6. Conclusion

The article formulated and solved the inverse problem of NDE the average of grain size – \(D_{mm}\) in a low carbon steel by using ultrasonic measurements – \((v_L; v_T)\). The solution for \(D_{mm}\) is obtain. It is decided by the ZEROIN algorithm. In this case \(D_{mm} = 0.020218\) is obtained. The error in NDE, by measuring velocities \((v_L; v_T)\), is less than 1%.

Reference