DEFECT SIZING BY LOCAL EXCITATION THERMOGRAPHY

Joachim SCHLICHTING, Guram N. KERVALISHVILI, Christiane MAIERHOFER, and Marc KREUTZBRUCK

BAM Federal Institute for Materials Research and Testing, Berlin, Germany
Phone: +49 30 8104 3884; Fax: +49 30 8104 1845; e-mail: joachim.schlichting@bam.de

Abstract
Active thermography recently experiences an increasing use in a number of NDT problems in production and maintenance. In this work we focus on the detection of vertical cracks starting at the surface, which is an important indication of structural failure. By using local thermal excitation it is possible to image anisotropies in the lateral diffusivity by recording the temporal temperature data with an infrared camera. The regional transient behaviour of temperature distribution then can provide quantitative information of the crack parameter. In doing so, we present an advanced technique for the determination of the crack depth. The experimental set-up is based on a NdYAG laser. The beam is focused on the test sample by using an optical scanner to create the required lateral heat flow. The time resolved temperature distribution is recorded with an infrared camera (InSb FPA, 3 to 5 µm) providing a frame rate of up to 500 Hz. In addition we report on numerical simulation to investigate the concept of local heat excitation for a quantitative estimation of crack parameters. The modelling also includes the influence of thermal conduction, radiation and convection. We obtained a good consistency between experimental and theoretical data.

Keywords: Thermography, Laser Excitation, FEM Modeling, Crack Sizing

1. Introduction

The detection of open surface cracks is an important task to prevent structural failure. Especially with regard to the widespread use of low ductility, high performance steel in lightweight construction, this is a subject of increasing interest.

There are several conventional NDT methods for crack detection. For example dye penetrant and magnetic particle inspection have been used for decades with great success. But these methods are generally unsuited for crack depth resolution. In addition direct access to the surface under investigation is required and expendable materials are used.

Usually the geometrical parameters of cracks are accessible with x-ray computer tomography (CT). In many cases ultrasound (UT) and – with certain restrictions - eddy current testing (ET) can provide deeper insight into the size and orientation of the material defect.
While with CT high-resolution 3D images of great geometrical accuracy are obtainable, this method is rather time consuming and expensive when pushing it to the limits.

UT and ET, the other reference NDT methods have of course proven to cover a great variety of testing problems and are very cost-effective because of their widespread use. But both methods require close access to the surface and are limited in testing speed if scanning is required for better spatial resolution. Furthermore ET is limited to electrical conductive materials and when testing anisotropic materials, it is problematic to gain unambiguous results by UT.

Thermography is a fast areal NDT method. In conventional setups a relatively homogenous heat flow is applied perpendicular to the surface by flash or halogen lamps [1], then the resulting temperature distribution at the surface is recorded with an infrared camera, allowing to estimate the heat flow in the object. In doing so it is possible to resolve a broad variety of defects, such as voids, pores, or delaminations. But due to the perpendicular heat flux it is only possible to resolve changes in the thermal properties in this direction. But cracks oriented perfectly perpendicular have no effect on the perpendicular heat flow, and thus cannot be detected.

To tackle this problem, common thermographic methods for crack-detection recently also include the defect selective ultrasonic [2] and inductive [3] excitation. Although at least for induction thermography quantitative relations are known [4], these methods are up to now mostly used for qualitative analysis only. Another method, which currently experiences intense research activities, is the so called "flying spot laser thermography". This approach uses a laser, which is scanned over the surface. Changes in the heat conductivity then lead to changes in the thermal footprint, which is then used for crack-detection. A good overview about crack-detection with laser thermography can be found elsewhere [5]. But with all these methods mentioned here, it is not possible to accomplish a fast, contact-free and reliable crack characterization.

In this work an advanced technique to characterize the crack depth by active thermography is presented. A laser is used for heating at a fixed position in proximity to the crack. The disturbance of the lateral heat flow caused by the crack leads to an unsymmetrical thermal footprint of the laser. A quantitative analysis of this effect is used to determine the crack depth.

A major positive aspect of this method is, that it is based on well known physical effects, which particularly do not include any interference or chaotic behavior. So simulation should be robust and reliable. This is proven by comparing experimental results with FEM analysis.

2. Experimental Setup

The experimental work presented here was conducted at the "thermoshock facility" (see Fig. 1). The spot of a 1000 W cw Nd:YAG laser is projected by scanner optics to the sample surface. The thermal response is recorded by a Raytheon InSb IR camera
with a spatial resolution of 256 x 256 px. The sample itself is placed in a vacuum chamber, so different environmental conditions can be applied.

FIGURE 1. Photo (left) and sketch (right) of the experimental setup. The Laser is not shown at the left image. The yellow line is the fiber-optic light guide connecting laser and scanner optics. Specifications: Laser Nd:YAG, 1000 W cw, camera InSb max 256x256 px, 128x128 px @ 500 Hz.

FIGURE 2. Test specimen used for calibration. 10x10x4 cm³, 4 spark-eroded cracks on the top side: 1, 2, 3, and 4 mm deep, ~0.2 mm wide, a hole for contact thermometer at the bottom side.

The test specimen used for calibration was a 10 x 10 x 4 cm³ block made of st37 construction steel with four spark eroded cracks (see Fig. 2). It was graphite coated for higher emissivity. The measured temperature was calibrated by applying a thermocouple in the hole on the backside.

3. Measurements

To perform the crack sizing, a fixed laser spot position was used for heating and the asymmetries in the laser's thermal footprints caused by the thermal resistance of the cracks were analyzed. Using this particular experimental setup, best result were obtained with an excitation for two seconds at 25 W laser power, so assuming an emissivity of 0.8 a heat energy of 40 J is deposited in the material. The spot was positioned at distances of 1, 1.5, 2, 3, and 5 mm at both sides of each crack as seen in Fig. 3.
For data analysis the following procedure was used (see Fig. 4). Two reference areas are defined ($A1, A2$) in equal distance e to the laser spot. For different spot positions the distance c between $A1$ and the crack is fixed. The difference between the spatial mean intensity respectively temperature values in both reference areas is taken. The mean value in time of this expression then is defined as crack depth value cdv:

$$ cdv := \frac{1}{t} \int_{t_1}^{t_2} dt \Delta T(t) $$

(1)

For this setup $t_1=1$ s and $t_2=1.6$ s were beneficial. Using the described procedure a single number of high signal to noise ratio is obtained as a figure of merit for the crack depth.

1; 1.5; 2; 3; 5 mm = d

FIGURE 3. Laser spot positions for different crack-to-spot separations.

In Fig. 5 we depict the cdv as function of different crack-to-spot separations for several crack depths to determine optimum spot and reference positions. We observe that:

- A high signal-to-noise ratio is obtained.
- The distance between spot and crack should be minimized.
- The crack depth can be distinguished in mm steps
- The relative error increases with crack depth.

FIGURE 4. Data analysis procedure: The difference between the measured transient intensities in two reference areas ($A1 & A2$) equidistant to the laser-spot can be used for determining crack-depth. The plots show intensities of thermal radiation in digital levels vs. time in seconds.
Although the spot should be close to the crack, we want to mention, that illumination of the crack itself should be avoided. Otherwise this would lead to undefined application of thermal energy resulting in lower and not reproducible cdv. Having this in mind, we have to account for the power distribution of the laser spot itself. A widely used model is a Gaussian distribution, which is unfortunately not limited in space. In our case the laser spot has a diameter (FWHM) of about 1 mm. It turned out, that a distance of 1 mm between the spot's center and the crack is sufficient to significantly direct crack-heating effects.

![Graph showing cdv as function of crack-to-spot distance](image)

FIGURE 5. cdv as function of crack-to-spot distance d for different crack depths.

4. Comparison between exprimental data and FEM-analysis

4.1 FEM modeling

The experiment was studied numerically using a commercial finite element analysis and solver software package [6]. For the three-dimensional case the heat transfer equation can be written in the following form:

$$
\rho C \frac{\partial T}{\partial t} = \frac{\partial }{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial }{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial }{\partial z} \left(k \frac{\partial T}{\partial z} \right),
$$

where ρ is the density, C is the specific heat capacity, T is the absolute temperature as function of time t, and k the thermal conductivity. The thermal parameters used here are $\rho = 7841 \text{ kg m}^{-3}$, $C = 470 \text{ J kg}^{-1}\text{K}^{-1}$, and $k = 56.7 \text{ W m}^{-1}\text{K}^{-1}$. The heat input was taken into account as a surface heat flux, which acts only on a fixed $S_0 = \pi r_0^2$ surface area, where $r_0 = 0.5 \text{ mm}$ is the laser beam radius. The constant q_0 and
Gaussian \(q_0^G \) distribution of heat input was simulated, where the Gaussian distribution had the following form:

\[
q_0^G(x, y, t) = \text{const} \cdot P_L \cdot \exp \left(-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2} \right) \cdot (H(t-t_1) - H(t-t_2)),
\]

where \(P_L \) is the power and \(x_0 \) and \(y_0 \) are the coordinates of the center of the laser beam on the specimen surface. \(\text{Const} \) is an integration constant, which guarantees that the total integrated power of the laser is equal in both cases:

\[
\int_{S_0} q_0^G(x, y, t) \, dS = \int_{S_0} q_0^C(t) \, dS.
\]

Here \(H(t) \) is the Heaviside step function, which describes the fact, that the Nd:YAG laser acts on the specimen surface only for the given \(\Delta t = t_2 - t_1 \) time interval. The following thermal boundary conditions were used [6]:

- **Heat flux**, where \(n \) is the normal unit vector on the surface:
 \[
n \cdot (k\nabla T) = q_0^G \text{ on } \partial S_0.
 \]

- **Surface to surface radiation**, for crack boundaries, where \(\varepsilon \) is the emissivity, \(G \) is irradiation, and \(\sigma \) is Stefan–Boltzmann constant (more details can be found in [6,7]):
 \[
n \cdot (k\nabla T) = \varepsilon (G - \sigma T^4).
 \]

- **Insulation**, for all other boundaries:
 \[
n \cdot (k\nabla T) = 0.
 \]

FIGURE 6. Mesh example for two different laser positions with respect to the crack position. According to the test specimen of Fig. 2 the model has a dimension of 100mm in length and width and height of 40mm.

In order to minimize the influence of the grid size on the accuracy of the numerical results, the simulations were done for different mesh cases. The difference between the presented numerical results and the results with a high accuracy mesh was less then \(10^{-3} \). But the simulation duration was 10-20 times longer. For a higher accuracy it
was necessary to decrease the grid size at the position of the laser, the crack boundaries, and the areas around the reference points. An example mesh for two simulations at the same crack with two different laser positions is shown in Fig. 6. Simulations were done for the same cases as it is described in the previous section. The influence of radiation heat transfer was studied using the surface to surface boundary condition between the crack boundaries. The results was, that the difference between 3D temperature distribution with and without radiation was less than $10^{-4} \, K$. This allows us to conclude, that for the given examined cases the influence of heat transfer induced by radiation is negligible in comparison to conduction.

![Temperature distribution for the region in vicinity of the crack. Top right: Temperature distribution at the vertical cross-section at $y=10$ mm, along the virtual line, where the reference areas A1 and A2 and the middle of the crack are located. Bottom: Temperature at reference areas as function of time (left axis) and the difference of both transients (right axis).](image)

FIGURE 7. Top left: Temperature distribution for the region in vicinity of the crack. Top right: Temperature distribution at the vertical cross-section at $y=10$ mm, along the virtual line, where the reference areas A1 and A2 and the middle of the crack are located. Bottom: Temperature at reference areas as function of time (left axis) and the difference of both transients (right axis).

The simulation results for a crack depth of 1 mm are shown in Fig. 7. In these plots we show the 2D temperature distribution in xy-plane (top left) and the zx-plane (top right) for fixed distances $z = 4$ mm and $y = -1$ mm, respectively. Also the temporal evolution of the temperature mean value of the temperature distributions at the
reference areas (see top right figure) are shown (bottom). This figure shows the difference in temperature distributions between the left and the right side of the given crack.

4.2 Comparison between Simulation an Measurement

The data reveals a quite good overall correlation between simulated and the experimental results (Fig. 8). The deviations can be explained by different possible effects. The high thermal inertia of the test specimen led to difficulties while performing the temperature calibration. Uncertainties in the exact distribution of the laser spot should also be taken into consideration.

By performing parameter variations the influence on different geometrical uncertainties was studied (Fig. 9). It should be emphasized, that a proper geometrical calibration is very important. Small changes in symmetry of the positions of the reference areas relating to the spot position led to significant errors. A shift of 10% already makes the individual crack depths nearly indistinguishable. A realistic uncertainty in the exact crack position is far less critical. With an error of 0.1 mm in the position of the crack, its depth can still be characterized with a mm resolution.

FIGURE 8. Comparison of experimental (solid) and simulation (dotted) data for different crack depth. In contrast to Fig. 5 temperature differences as functions of crack-to-spot distance are shown. A quite good overall correlation is achieved.
5. Summary and outlook

The use of laser excited thermography not only enables us to detect surface defects, but to characterize the crack depth, as well. Because of its differential character - only the differences between two reference areas are taken to account - this method appears to be robust to environmental influences, like e.g. changing background illumination and inhomogeneous emissivity. Because no direct or at least near contact is required, this approach seems to be well suited for automation.

We would like to point out, that these findings just demonstrate the feasibility of crack-depth characterization for relatively long notches. The influence of the crack length, and the amount of heat flow passing at the lateral edges of the defect still has to be investigated. In addition, the influence of the crack gap is still an intensely discussed issue. Further simulations and experiments are required to distinguish the effects of depth and gap more precisely.

6. Acknowledgements

The authors are grateful to BAM department V.2 for supporting this work by providing the thermoshock facility. We are also indebted to Andrea Kramer for helpful support at the laser facility.

FIGURE 9. Influences of geometrical uncertainties: For the left plot the position of the reference areas was asymmetrically shifted by 10%. In the right plot the influence of 0.1mm deviations in the crack-positions is shown.
7. References

