· Home
· Table of Contents
· Industrial Plant & Structures

Synergism of NDE & IT: A Generic Knowledge-base System for Effective and Reliable NDE

C.Rajagopalan, Baldev Raj and P.Kalyanasundaram
Metallurgy and Materials Group,
Indira Gandhi Center for Atomic Research
Kalpakkam 603 102 Tamilnadu INDIA.



Core Issues addressed by our framework

DESKPACK Architecture and Components

DESKPACK Architecture - Performance and Abilities

A Few Case Studies

Conclusions and Summary


  1. Dean, T., Allen, J., and Aloimonos, Y. (1995). Artificial Intelligence - Theory and Practice. Redwood City, CA: Benjamin/Cummings.
  2. Durkin, J. (1994). Expert Systems - Design and Development, NewYork, NY: Macmillan Publishing Company.
  3. Engelmore, E. and Morgan, T. (1988). Blackboard Systems, Reading, Massachusetts : Addison-Wesley.
  4. Ginsberg, M. (1993). Essentials of Artificial Intelligence. San Mateo, CA: Morgan Kaufmann Publishers, Inc.
  5. Luger, G.F., and Stubblefield, W.A. (1993). Artificial Intelligence. New York, NY: Benjamin/Cummings.
  6. Puppe, F. (1993). Systematic Introduction to Expert Systems - Knowledge Representation and Problem Solving Methods. Berlin : Springer-Verlag.
  7. Rajagopalan, C., A Generic Knowledge-based Systems' Architecture for Materials Evaluation, Ph.D. Thesis, (2000), University of Madras.
  8. Rajagopalan, C., Baldev Raj and Kalyanasundaram, P. (1996). The Role of Artificial Intelligence in Nondestructive Testing and Evaluation, INSIGHT, Vol. 38, No. 2, February, pp. 118 - 123.
  9. Rajagopalan, C., Baldev Raj and Kalyanasundaram, P., (2000). A soft-computing framework for fault diagnosis, Information Sciences, 127, pp. 87 - 100.
  10. Rich, E., and Knight, K. (1991). Artificial Intelligence. New York, NY : McGraw-Hill.
  11. Robey, B.L., Fink, P.K., Venkatesan, S., Redfield, C.L., and Fergusson, J.W. (1994). DRAIR - Adviser - A Knowledge-Based System for Materiel-Deficiency Analysis, Artificial Intelligence Magazine, Summer, pp. 67 - 82.
  12. Russell, S., and Norvig, P. (1995). Artificial Intelligence - A Modern Approach. Englewood Cliffs, NJ : Prentice-Hall.
  13. Shyamsunder, M.T., Rajagopalan, C., Raj, B., Dewangan, S.K., Rao, B.P.C., and Ray, K.K. (2000). Pattern Recognition Approaches for the Detection and Characterisation of Discontinuities by Eddy Current Testing. Materials Evaluation, January, Vol. 58, No. 1, pp. 93 - 101.
  14. Stefik, M. (1995). Introduction to Knowledge Systems. Palo Alto, CA : Morgan Kaufmann.
  15. Stensmo, M. and Sejnowski, T. (1995). A Mixture Model System for Medical and Machine Diagnosis, in Tesauro, G., Touretzky, D.S. and Leen, T.K. (Eds.) (1995). Advances in Neural Information Processing Systems, Vol. 7, MIT Press, Cambridge, MA, USA.
  16. Sun, R. and Bookman, L. (Eds.) (1994). Computational Architectures Integrating Neural and Symbolic Processes. Boston, MA : Kluwer Academic Publishers.
  17. Ulieru, M. (1994). "A Fuzzy Logic Based Computer Assisted Fault Diagnosis System" European Journal of Diagnosis and Supervision, Vol. 3, Num. 3, pp. 405-441.
  18. Verbruggen, H.B., S.G. Tzafestas, E. Zanni; Knowledge-based fault diagnosis of technological systems. In: S.G. Tzafestas, H.B. Verbruggen; Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer Academic Publishers, Dordrecht, 1995, p. 449-506.
  19. Winston, H.A., Clark, R.T., Buchina, G. (1995). Agets MBR - An Application of Model-Based Reasoning to Gas Turbine Diagnostics. Artificial Intelligence Magazine, Winter, pp. 67 - 77.
  20. Winston, P. (1992). Artificial Intelligence, New York, NY : Addison-Wesley.

© AINDT , created by NDT.net |Home|    |Top|