DGZfP-JAHRESTAGUNG 2001
Zerstörungsfreie Materialprüfung
ZfP in Anwendung, Entwicklung und Forschung
Berlin, 21.-23. Mai 2001 -Berichtsband 75-CD
START
Beiträge: Vorträge: Nichtmetalle - Polymere:

Bestimmung des komplexen Elastizitätsmoduls eines Polymers zur Identifikation eines viskoelastischen Stoffgesetzes mit fraktionalen Zeitableitungen

André Schmidt und Lothar Gaul
Institut A für Mechanik
Universität Stuttgart
70550 Stuttgart

ABSTRACT:

1 Einleitung

2 Definition fraktionaler Ableitungen

3 Eigenschaften fraktionaler Ableitungen

4 Fraktionale Stoffgesetze

5 Eigenschaften des fraktionalen 3-Parameter-Modells

6 Parameteridentifikation

7 FE Implementation und Vergleichsrechnung

8 Zusammenfassung

Danksagung

Literatur

  1. Bagley, R.L., 1989. Power law and fractional calculus model of viscoelasticity. AIAA Journal 27(10): 1412-1417.
  2. Bagley, R.L. & Torvik, P.J., 1983. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Applied Rheology 27(3): 201-210.
  3. Bagley, R.L. & Torvik, P.J., 1984. On the appearance of the fractional derivtive in the behavior of real materials . Journal of Applied Mechanics 51: 294-298.
  4. Bagley, R.L. & Torvik, P.J., 1986. On the fractional calculus model of viscoelastic behavior. Journal of Rheology 30(1): 133-155.
  5. Bathe, K.-J., 1990. Finite-Elemente-Methoden. Springer Verlag, Berlin.
  6. Caputo, M. & Mainardi, F., 1971. Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento 1(2): 161-198.
  7. Cole, K.S. & Cole, R.H., 1941. Dispersion and absorption in dielectrics. Journal of Chemical Physics 9: 341-352.
  8. Ferry, J.D., Landel, R.F. & Williams, M.L., 1955. Extensions to the Rouse Theory of visco-elastic properties to undiluted linear polymers. Journal of Applied Physics 26(4): 359-362.
  9. Gaul, L., 1999. The influence of damping on waves and vibrations. Mechanical Systems and Signal Processing 13(1): 1-30.
  10. Gaul, L. & Schanz, M., 1999. A comperative study of three boundary element approaches to calculate the transient response of viscoelastic solids with unbounded domains. Comput. Methods Appl. Mech. Engrg. 179: 111-123.
  11. Gemant, A., 1936. A method of analyzing experimental results obtained from elasto-viscous bodies. Physics 7: 311-317.
  12. Gemant, A., 1938. On fractional differentials. The Philosophical Magazine 25: 540-549.
  13. Grünwald, A.K., 1867. über "begrenzte" Deviationen und deren Anwendung. Zeitschrift für angewandte Mathematik und Physik 12: 441-480.
  14. Koeller, R.C., 1984. Applications of fractional calculus to the theory of viscoelasticity. Journal of Applied Mechanics 51: 299-307.
  15. Oldham, K.B. & Spanier, J., 1974. The Fractional Calculus. Academic Press, New York.
  16. Padovan, J., 1987. Computational algorithms for FE formulations involving fractional operators. Computational Mechanics 2: 271-287.
  17. Podlubny, I., 1999. Fractional Differential Equations. Academic Press, New York.
  18. Rouse, P.E. Jr., 1953. The theory of linear viscoelastic properties of dilute solutions of coiling polymers. The Journal of Chemical Physics 21(7): 1272-1280.
  19. Schmidt, A., Oexl, S. & Gaul, L., 2000. Modellierung des viskoelastischen Materialverhaltens von Kunststoffen mit fraktionalen Zeitableitungen. In 18. CAD-FEM User's Meeting, Friedrichshafen 20.-22. September. CAD-FEM GmbH, Grafing.
  20. Schmidt, A. & Gaul, L., 2001. Finite Element formulation of viscoelastic constitutive equations using fractional time derivatives. Journal of Vibration and Control (to appear).
  21. Scott-Blair, G.W. & Caffyn, J.E., 1949. An application of the theory of quasi-properties to the treatment of anomalous stress-strain relations. The Philosophical Magazine 40: 80-94.
  22. Zimm, B.H., 1956. Dynamics of polymer molecules in dilute solutions: viscoelasticity, flow birefringence and dielectric loss. The Journal of Chemical Physics 24(2): 269-278.
Herausgeber: DGfZP,
Programmierung: NDT.net
START