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Abstract. Handheld metal detectors are one of the most common devices used for 
clearing landmines in the context of humanitarian demining. However, their 
capability to discriminate between different objects is limited, leading to a high false 
alarm rate. In this work, data sets from spatially referenced measurements with an 
induction detector are evaluated. First, regions of interest are identified by a new 
method that considers signal symmetry in combination with classical threshold 
based methods. Second, a new approach of applying phase plots to discriminate 
buried objects is presented that applies to multi-frequency continuous wave metal 
detectors. Multidimensional phase observables are constructed that allow successful 
subsequent classification. The capability of the new methods is demonstrated using 
data sets from numerical simulations as well as from different test lanes. The 
achieved improvements in the field of object discrimination are presented.    

1 Introduction  

As a legacy of armed conflicts land mines endanger the population in many countries. The 
rapid and complete removal of the about 100 million buried land mines world-wide is a 
large technical challenge. At present, the most frequently used device for humanitarian 
demining is the metal detector [1]. The prevalence of this type of device has several 
reasons: Metal detectors are sensible for very small metal pieces, well suited for rough 
areas, easy to use and cheap. However, metal detectors can not distinguish between 
dangerous mines and unoffending objects that pervasively exist in the ground. As a result, 
metal detectors exhibit a high false alarm rate.  
 Deminers in the field estimate that for each true landmine alarm there are about 400 
false alarms from harmless objects. As every indicated object has to be excavated by the 
deminer, the high false alarm rate slows down the demining process significantly. In 
addition, too many false alarms may lead to an inattentive behaviour in the mine field. 
Therefore, one main objective in metal detector research in the context of humanitarian 
demining is to reduce the high false alarm rate. When this objective is addressed by signal 
analysis methods the idea is to extract additional information from raw data and to 
subsequently classify unknown objects in the two categories “object is possibly a mine” 
and “object is definitely not a mine”.  
 One promising approach is to expand the data basis and to use spatially referenced 
data sets. This considers the fact that adjacent measurement values are highly correlated 
when a detector is moved over an object. In practice, there are different techniques 
available for a simultaneous measurement of the position: The metal detector could be 
mounted on a x-y-scanner that is moved over an area on a regular pattern. This method for 
example is used on different test lanes imitating a mine field [2, 3]. In another approach, 
handheld metal detectors are enhanced by a position measuring device, like a camera-based 
system detecting reference points [4] or calculating correlations [5].  
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A metal detector enhanced with a position sensor provides an increased amount of 
raw data. To extract the relevant information, new signal analysis algorithms are necessary. 
First, the signals have to be scanned for buried metallic objects to obtain regions that are 
then evaluated in more detail. Currently, this task is done manually by the deminer in the 
field. The metal detectors in use measure induction voltages and alert the deminer when the 
value is over a certain threshold. The deminer then estimates the exact position of the mine 
by a so called “pin-pointing” procedure [1]: The detector is swept on different pathways 
over the mine monitoring the acoustic alarm. As a result, the estimated closest position to 
the mine is marked. 
 Secondly, instead of excavating objects in question the signals in the vicinity of that 
object are evaluated. The objective is to find features that allow for object discrimination or 
at least a distinction in the two categories “object is possibly a mine” and “object is 
definitely not a mine”. One approach is based on the evaluation of the complex responses 
of continuous wave (CW) metal detectors [6, 7]. In that context, especially phase values 
have shown their capability for object discrimination as shown by Bruschini et al. [7]. Here, 
based on the results of a computer simulation, the in-phase and quadrature signal 
components for different frequencies are combined to multidimensional phase values. 
 In this paper, new algorithms for automated pin-pointing and for object 
discrimination are presented. The pin-pointing algorithm evaluates symmetry features in 
spatially resolved data sets, in combination with the classical threshold based approach. The 
object discrimination is based on characteristic 2d phase values that are calculated for 
unknown pin-pointed objects.   

2 Automated Pin-Pointing 

When a metal detector is combined with a position measuring device, the resulting 
enhanced metal detector provides 2d data sets representing the trajectory. An obvious 
additional feature in these data sets is the symmetry around objects in question. In Fig. 1, a 
simulated 2d data set for a measurement with a receiving coil in double-D configuration is 
shown (details of the simulation are given in chapter 2.2). The signal that is measured 
around the object is anti-symmetric regarding a 180° rotation around the centre of the 
object. This kind of symmetry holds for all spherical objects and it is a good approximation 
for other small objects. Similar symmetries exist for detectors with elliptic coils as well. 

2.1 Description of the algorithm 

The new algorithm for automated pin-pointing extends the classical threshold based 
approach by evaluating the symmetry in the data sets. The combination of these two criteria 
improves the ability to detect metal objects as will be shown in this chapter.  
 An algorithm for detecting symmetry in the context of humanitarian demining has 
to possess the following two properties: First, it has to detect the symmetry independently 
from the contrast in order to cope with different depths. As the signal strength drops with 
the 6th power of the objects depth due to the Maxwell Equations, differences in signal 
strength between shallow and deep objects easily reach magnitudes of 103 or higher. 
Secondly, the algorithm has to point the centre of the object as close as possible. Thereby, 
the algorithm provides a reliable reference point for subsequent feature extractions. 

The new algorithm for detecting symmetry is based on metal detector data sets on a 
regular 2d grid. It works with data sets from CW metal detectors as well as with datasets 
from pulse induction detectors when in the later case the time response at one position is 
condensed to a single value. Often, this is accomplished by integrated the time response in 
a window of interest. In the following, the algorithm is described for signals that are 
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recorded with a metal detector having a double-D receiving coil. The results, however, 
could easily be transferred to other designs. The algorithm is as follows: 
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The recorded data set is stored in a 2d array with entries labelled Si,j. The parameter n 
denotes the window size for the symmetry operation. For optimal results, this parameter has 
to be chosen subject to the coil size. The gradient is taken perpendicular to the symmetry 
axis of the receiving coil, as shown in Fig. 1. Spatially smoothing of the data set typically 
enhances the result on noisy data sets. Therefore, a mean filter or a 2d Butterworth low-
pass filter is usually applied in advance. Moreover, the results could be improved by prior 
applying methods for soil compensations, e.g. different methods for multivariate data sets. 

2.2 Results for simulated 2d data sets 

The new algorithm is first evaluated using data sets from numerical simulations. In this 
way, the capability of the algorithm is shown independently from disturbing effects, like 
e.g. variations in the soil composition. The simulations are performed by a computer 
program of the University of Köln [8] that is based on a dipole approximation for small 
metallic spheres. The configuration for the simulation consists of two steel spheres with 
diameter 10 mm. They are located in the x-y-plane at the positions (30 cm, 30 cm) and (90 
cm, 30 cm), lying 5 cm resp. 10 cm below the detector. The excitation frequency is 2.400 
Hz. The induction values are computed for a regular grid with a mesh size of 2 mm and 
scaled by a uniform factor. The data sets from the simulation are shown in Fig. 1. 

At first, two standard symmetry algorithms from the field of image processing are 
applied to the simulated data sets. In both cases, the simulated data sets are converted to 
fulfil the symmetry assumptions of the algorithms (rotational symmetry, established by 
integration in the data sets along the x-axis). Moreover, the values are linearly transformed 
to the interval [0:255] as the image processing algorithms are typically optimized for this 
range.  

The algorithm of Reisfeld et al. [9] localizes the object with high contrast, but fails 
in detecting the low contrast object on the right (Fig. 2). Even when methods for contrast 
enhancement are applied, like log-scale transformations of the data set, this shortcoming is 
still existent. On the other hand, the localisation of the shallow object works in principle 
although it is not perfect. The algorithm of Kovesi [10] detects objects with different 
contrasts as can be seen in Fig. 3. However, the localisation resp. pin-pointing for 
symmetric objects is not satisfying: There is no sharp peak that marks the centre of the 
objects. Due to the described restrictions, both algorithms are unsuitable for automated pin-
pointing of metallic objects. 

The result of the automated pin-pointing algorithm, equation (1), is shown in Fig. 4. 
The two metal spheres are well localised by two dark spots, i.e. the spots have the correct x-
y-positions and their boundaries are sharp. The influence of the contrast on the spot 
intensity and geometry is very small. These good results could be ascribed to the 
construction of the algorithm: The tight localisation is due to the twofold application of the 
symmetry operation in equation (2). The independence of the contrast is due to the 
intermediate operation grad(log).  

The improvement of the new pin-pointing algorithm based on symmetry is obvious. 
In addition, further precision could be achieved by applying centre-of-mass algorithms for 
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sub-pixeling the x-y-position. By another extension, the additional spot with lower intensity 
exactly in the middle between the two dominating spots could be eliminated. 

 

Fig. 1: Simulated 
measurement data for 
a CW metal detector 
with a receiving coil in 
double-D geometry. 
The scene contains 
two steel spheres at 
depth 5 cm (left) and 
10 cm (right). The 
values shown are the 
induction voltages.  

 

Fig. 2: Results of the 
symmetry operator 
S1(p,1) from Reisfeld 
et al. Only the left 
object with high 
contrast is found.  

 

Fig. 3: Results of the 
symmetry operator 
from Kovesi. Both 
objects are found. 
However, the 
indications of the 
object centres are 
blurred. 

 

Fig. 4: Results of the 
new automated pin-
pointing algorithm, 
equation (1), with 
n=20 cm. Both objects 
are found. The pin-
pointing is sharp and 
accurate. 
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2.3 Results for a real data set 

The algorithm for automated pin-pointing is further 
evaluated for a 2d data set that was recorded on an 
outdoor test lane. These data sets put additional demands 
on the algorithm as they contain perturbations like sensor 
drift, sensor noise and soil fluctuations. 

The measurements were carried out in Ispra [2] 
by the Fraunhofer Institute IZFP.  A differential CW 
metal detector with an excitation frequency of 2.4 kHz 
was deployed. The data set was digitized nearby the 
receiving coil connector. The metal detector itself was 
mounted on an x-y-scanner that was moved on a zigzag 
pattern over the test field.  

In Fig. 5, the data set for soil “4A” is shown. 
Again, signals with typical symmetry properties are 
perceptible (the buried metallic objects are near to the 
crosses of the additional grid). The positions that are the 
outcome of the pin-pointing algorithm are marked with 
numbered dots.  

As expected, the algorithm detects weak signals 
that are difficult to detect otherwise (object 7; surrogate 
M1A at 5 cm depth). However, the limit is reached for 
surrogate M1A at greater depths that are neither 
accessible by symmetry or threshold algorithms. The 
object 4 is an unknown shrapnel piece that would not 
have been found by the classic threshold approach.  

Complex extended objects are not accessible by 
the symmetry algorithm as the signals around these 
objects may lack the typical symmetry. An example in 
Fig. 5 is the object with markers 11 & 15, which in 
reality is one single object. However, with the strong 
signal in this example, the object is easily found by 
threshold methods. – The algorithm could generate false 
alarm, see e.g. object marker 5. Here, the detected 
symmetry lies exactly in the middle between two 
dominating objects. However, it could be eliminated by 
an extended version of the algorithm.  

The result of this evaluation is that the algorithm 
works well with typical signal perturbations that occur in 
real data sets. The algorithm is a good supplement to 
threshold based methods. 

Fig. 5:  The in-phase component for 
the soil “4A”, after conversion to a 
log-scale to enhance details. The 

grid serves as orientation help. The 
results of the automatic pin-pointing 

algorithm are marked with 
numbered dots. 

3 Characteristic 2d phase values 

When using a metal detector in a mine field, deminers use pin-pointing procedures to find 
the objects that probably could be a mine. The pin-pointing itself could be done manually 
or by an automatic algorithm as described in the previous chapter. The data sets in the 
proximity of a found object are now evaluated in more detail by calculating characteristic 
2d phase values. In that way, additional information is provided to the deminer. 
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3.1 Principle of the algorithm 

In a first evaluation step, spatially resolved data sets around hidden objects are analyzed 
using concepts from the field of signal analysis. As in the previous chapter, the evaluation 
is based on simulated data sets that are calculated with a computer program from the 
University of Köln [8]. With that program, the detection process for different spheres is 
simulated by calculating the induction voltage of a receiving coil (real and imaginary parts), 
for different excitation frequencies in air. In the simulations, perturbations effects like soil 
variations are disregarded.   
 A major result of the evaluations is that the quotients of different combinations of 
measurement channels (real or imaginary parts for different frequencies) do not change 
when the metal detector is swept over a sphere. That means that the quotient is independent 
of the offset between detector and object (see Fig. 6) as well as of the depth of the object. 
The quotient however is dependent of the radius, the electrical conductivity and the 
magnetic permeability of the sphere. For that reason, signal quotients could be used to 
discriminate the simulated objects. The same holds for the phase of (complex) signal values 
as, by definition, the phase is an inverse trigonometric function of the quotients. 

However, a simple constant phase assumption for data sets around objects is not 
admissible. In practice, complex and huge objects may have phase values that change 
notable when the detector is swept over the object [7]. And it is in the nature of things that 
it is usually unknown whether a buried object has a sphere like shape or not. 
 Based on these results, the new algorithm for discriminating different objects 
considers the following principle: If and only if the phase values (of different signal 
combinations) vary only slightly in the proximity of a hidden object, multidimensional 
average phase value are calculated as an additional feature for object discrimination. 

3.2  Description of the algorithm 

The algorithm for calculating characteristic 2d phase values processes data sets that are 
acquired with a differential two frequency CW metal detector. The detector is swept over a 
pin-pointed object. During that movement, data vectors ( )iiiii im2im1re2re1d ,,,= are 
steadily recorded, with consecutive label i. Each data vector contains the real “re” and 
imaginary “im” part of the responses, for each of the two frequencies f1 and f2 (labelled by 
“1” and “2”). The signals at the pin-pointed position are used as reference, i.e. they are 
subtracted from the measured signal values in order to obtain the signals in the vectors id . 

In a first step, the influence of the soil is reduced. The soil influence is especially 
prevalent in the imaginary channels as it is shown in [11]. A simple method to reduce the 
soil influence is to transform the data ( )( )iiiii im2im1ffre2re1d −⋅= 1/2,,~ . Also, more 
sophisticated methods for soil reduction could be applied. After this step, the data vectors 
are transformed to spherical coordinates, i.e. ( )iiii rd ϑθ ,,ˆ = . To obtain proper phase values 
(in the context of complex signals) the values for iθ  and iϑ  are constrained to a half space. 

Subsequently, the variations of the phase values are evaluated. If they are below a 
threshold, characteristic 2d phase values chθ  and chϑ  are calculated. To minimize noise 
effects, only the phase values of strong signal ir  are considered. When the data sets are 
spatially referenced, the allowed data vectors could be further confined to the positions 
where the signal extremes are expected.  
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The extension to data sets from multi-frequency CW metal detectors is straightforward. 
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3.3 Results for simulated 2d data sets 

The new algorithm is evaluated using data sets from numerical simulations, similar to the 
procedure in the previous chapter. The simulation objects are different steel spheres, with 
diameters ranging from 4 mm to 36 mm. They are positioned in different depths from 20 
mm up to 200 mm. The excitation frequencies are 2.4 kHz and 19.2 kHz. The induction 
values are computed for a straight line over the pin-pointed position, with a spacing of 
1 mm. The results for simulated data sets are shown in Fig. 6. 
 The characteristic 2d phase values are an efficient feature to discriminate different 
spheres. The results for the same sphere at different depths lie on top of each other, i.e. the 
feature is indeed independent of the depth. Moreover, and especially important in the 
context of humanitarian demining, the object discrimination is well suited for small objects 
due to the enlarged spacing between the 2d phase values for small spheres.  

 

      

Fig. 6: Left: Simulated induction data for a sphere. The quotient of different responses (e.g. Re1/Re2) is 
independent of the position (x-axis) – Right: Characteristic 2d phase values for simulated steel spheres with 

different radii. The material parameters are µr = 400 and σ  = 5.46 MS/m.  

 
 

3.4 Results for a real data set 

The algorithm for automated pin-pointing is further evaluated for a real data set. The data 
set was recorded at the test site of the University of Rostock [5]. At this facility, steel 
spheres of different diameters as well as different mine surrogates (M1A and M2B) were 
buried in a loessic soil at depths ranging from 20 mm up to 200 mm. The measurements 
were carried out with a differential CW metal detector, with excitation frequencies of 2.4 
kHz and 19.2 kHz. The data set was digitized nearby the receiving coil connector. The 
metal detector itself was mounted on an x-y-scanner that was moved on a zigzag pattern 
over the test field. 
 In a first step, the data sets are searched for metal objects using the pin-pointing 
algorithm from chapter 2. Objects with high metal content are found in all buried depths. 
Low metal objects, however, like the mine surrogate M1B, are only found up to a 
maximum detection depth, that is object depending and less than 200 mm.  

All found objects are analyzed with the algorithm that provides characteristic 2d 
phase values. Although the signals measured on test lanes contain perturbations from 
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different sources like soil variations and sensor noise, the phase values are still almost 
independent of the offset between detector and buried object. In Fig. 7, the resulting 
characteristic 2d phase values of the algorithm are shown.  

As a major result, the characteristic 2d phase values are a qualified means to 
exclude unknown objects from being a mine, at least for the evaluated objects. In Fig. 7, the 
values for one kind of object at different depths lie close together which is highlighted by 
grey boxes. As the boxes are non-overlapping, the characteristic phase values are features 
that allow for object discrimination. Subsequently, an assignment to the two categories 
“object is possibly a mine” and “object is definitely not a mine” could be done by a 
classifier. As the cluster for different objects are far apart, standard algorithms for 
classification could be used like e.g. a NN-classifier.  

The characteristic 2d phase values of the spheres are in good agreement with the 
values that were predicted by the simulations. Also, the spacing between the two small 
spheres is notable bigger than the spacing between the two big spheres. The more extended 
and complex objects M1A and M2B lie aside off the line that is defined by the different 
spheres. 

  

 

Fig. 7: Characteristic 2d phase values of different objects. All values for one single object are inside the 
labelled grey boxes. Each dot inside a box belongs to a different object depth (not inscribed). 

4 Summary 

In this article, new algorithms for the evaluation of CW metal detector data sets were 
presented. The algorithm for automatic pin-pointing provides reliable position estimations 
for metal objects in a test field. This is especially true in combination with classical 
threshold methods. At present, the algorithm requires data sets on a 2d grid as they are 
provided e.g. from an x-y-scanner. In order to integrate the symmetry concept to handheld 
metal detector, the amount of necessary input data still has to be reduced. 

The algorithm for discriminating objects was tested for different objects that were 
successfully distinguished by the characteristic 2d phase values. At present, however, a 
generalisation of these results is difficult as the data basis so far is small. Additional 
measurements with more complex objects and different orientations will be necessary. The 
features are likely to vary more for complex and extended objects which is supported e.g. 
by the recorded data sets from Bruschini et al. [7]. The additional evaluations will also 
provide an indication whether this new method will be a candidate for a full integration 
with handheld metal detectors.  
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