Motivation, Objective

➢ In oil conveyor plants steel is to be replaced as material for the pump rods by fiber-reinforced polymers. Adhesive joints are intended for connecting the pump rods with the remaining structural steelwork.

➢ Quality of different sticking procedures and suitability of design for the adhesive surface should be evaluated by non-destructive methods.

➢ Investigations with ultrasound and X-rays were not successful.

Horst Kühnicke

Characterization of adhesive joints between steel and fiber-reinforced polymers
Data Acquisition

Settings of AE system AE.engine

Frequency range 100 … 300 kHz
AE channels 4
Sample rate 2 MHz
Sample length 64 kSamples
Dynamic 90 dB_{AE}
Waveform buffer 256 MSamples

AE system with pump rod prepared like tensile specimen and four sensors

Horst Kühnicke

Characterization of adhesive joints between steel and fiber-reinforced polymers
Evaluation Methods

- Maximum amplitude
- Event rate
- Energy per event
- Felicity factor
- 2D location plus gate technique

Typical waveforms for events at the beginning of the damage

Tensile specimen with four sensors

Horst Kühnicke
Characterization of adhesive joints between steel and fiber-reinforced polymers
Results

Linear location was used
• to exclude event generated in the tensile testing machine and
• to distinguish events from both upper and lower adhesive joint.

Increasing commutative events of three following each other load cycles was defined as criterion for the begin of the damage.

Horst Kühnicke
Characterization of adhesive joints between steel and fiber-reinforced polymers
Summary

- In the stage of development the acoustic emission analysis has been proven as fast procedure to evaluate the quality of different sticking procedures and of different constructions for the adhesive surfaces.

- During cyclic loading the adhesive joint showed a clear felicity effect for all tested designs at beginning of damage.