Replacement of Conventional NDT with Advance NDT Methods for Oil and Gas

By

Zeki Gokce

Team Industrial Services
Asset Integrity Goal

– To ensure that the entire infrastructure remains safe, effective for the operating life
– Minimizing risky and costly activities such as confined space entry, removal of insulation to perform inspection
– Need to understand that remaining life can change over the course of asset life due to
 • Economic conditions
 • Operating conditions
 • Damage mechanism rates
 • Risk
Safety

- Ensure the equipment is safe to operate, maintain and inspect
- Reduce the number of confined space entries
- Removal of insulation can expose workers to environmental hazards
Damage Mechanisms and Inspection Techniques

<table>
<thead>
<tr>
<th>Damage Mechanism</th>
<th>Damage Type</th>
<th>NDE Method</th>
<th>Advance NDE Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under Support corrosion</td>
<td>Localized wall thinning</td>
<td>Conventional UT, Visual Inspection</td>
<td>Medium and long range UT, using Guided Waves</td>
</tr>
<tr>
<td>Sand Erosion on the shell, heads and nozzles</td>
<td>Localized wall thinning</td>
<td>Conventional UT</td>
<td>C-Scan, Straight beam AUT</td>
</tr>
<tr>
<td>Microbiologically Induced Corrosion</td>
<td>Localized wall thinning</td>
<td>Conventional UT</td>
<td>Medium range UT, EMAT angle beam inspection</td>
</tr>
<tr>
<td>Hydrogen damage</td>
<td>Step cracking in parent material</td>
<td></td>
<td>EMAT angle beam scanning</td>
</tr>
<tr>
<td>Boiler water wall inspection</td>
<td>Wall thinning, hydrogen damage, stress corrosion cracking</td>
<td>Conventional UT</td>
<td>EMAT inspection</td>
</tr>
<tr>
<td>High temperature thickness measurement</td>
<td>Wall thinning</td>
<td>Conventional UT</td>
<td>EMAT thickness measurement</td>
</tr>
<tr>
<td>Corrosion under insulation</td>
<td>Localized wall thinning</td>
<td>Conventional UT</td>
<td>Medium Range UT, pulsed eddy current, Digital radiography</td>
</tr>
<tr>
<td>Surface Cracks on complex geometries</td>
<td>Surface Cracks</td>
<td>MPI</td>
<td>EMAT surface waves</td>
</tr>
</tbody>
</table>
Guided Wave Testing (GWT)

- Long range ultrasonic technique for screening piping and pipelines
- Test range up to 300 feet from a single collar location
- Elevated temperatures without taking the piping out of service
- 100% of the pipe is inspected
- Rapid, full coverage screening

- Difficult to access locations
 - Inaccessible piping
 - Corrosion under insulation
 - Wall penetrations
 - Pipe racks
 - Soil to air interfaces
 - Corrosion under supports
 - Underground piping
 - Road crossings
 - ILI verifications

Follow up with NDE and ultrasonics
• Permanently installed Guided Wave collars are used for precise monitoring with detection of less than one percent cross sectional change.
 – New algorithms can detect even the slightest change and compensate for environmental changes.
 – Online data basing and review is available.
 – These tools have service life expectancy of >10 years.

• PEC probes can also be permanently mounted for occasional monitoring for critical areas.
Tank and Vessel Hydrogen Damage Inspection

- Simple angle beam Pitch-Catch technique
- Bulk wave at 35°
- Distance between probes up to 24”
- Multiple skips
- Looking for amplitude drops due to inclusions
Inclusions in the parent material will dissipate sound.
Amplitude of sound reaching the Receiver will decrease.
By gating the received signal, a simple line scan will show indications as drops in amplitude.
Indications can be further sized using conventional ultrasonic testing.
EMAT Boiler Inspection

- Individual Tube thickness graph
- Elevation Thickness Graph
- Overall multiple tube display
- Recently replaced tube

Individual Tube thickness graph

Elevation Thickness Graph

Overall multiple tube display

Recently replaced tube
High Temperature Thickness Monitoring

• EMAT Ultrasonic is an ideal method for thickness measurements on conductive materials. The advantages include:

 • Dry, non-contact ultrasound generation permits inspection of very hot (up to 1800F) and very cold material. Lack of couplant requirements also provides extremely reliable and repeatable inspections with micrometer accuracy.

 • Imperviousness to surface conditions. The material can be coated, rough or dirty thus eliminating the need for surface preparations.

 • Inspections of difficult materials such as cast steel, cast iron, austenitic stainless steels, coated and painted surfaces.
EMAT - Piping & Equipment

- Crevice Corrosion Pipe Support Interface
- Crevice Corrosion on Horizontal Vessel’s Saddle Support Interface
- Soil to Air Inspection
- Rapid Screening of large linear feet of piping systems
- High Temperature Thickness Monitoring above 1000F
Corrosion Under Insulation (CUI)

- Corrosion Under Insulation (CUI) detection solution
 - Guided Wave Ultrasonic Inspection (GW)
 - Real-Time Radiography Inspection (RTR)
 - Digital Radiography Profile (DR)
 - Pulsed Eddy Current (PEC)
 - Rope Access
About Team

Premiere specialty industrial services provider

4,000+ trained and experienced employees

125 service location around the globe

Over 40 years of experience

“Delivering service solutions to the world’s leading companies”
Service Lines Offered

- Leak Repair
- Hot Tapping
- Field Machining
- Technical Bolting
- Valve Repair Services
- Field Heat Treating
- NDT Inspection
- Emissions Control Services
- Pipe Repair Products
- Turnaround Services
- Metallurgical and Engineering