DETECTION OF LOCAL STRESS CONCENTRATION ZONES IN ENGINEERING COMPONENTS – THE MISSING LINK IN THE NDT SYSTEM

Anatoly Dubov¹, Peter Trampus², Peter Ladanyi³

¹ Energodiagnostika Co. Ltd., Russia, mail@energodiagnostika.ru
² University of Dunaujvaros, Hungary, trampus@uniduna.hu
³ Interproject Europe Ktf., Hungary, Peter.Ladanyi@tuv.net

It is known that the main sources of damaging during engineering products operation are local stress concentration zones (SCZs) that form under the effect of working loads, first of all, on metallurgical and process defects.

Metallurgical and process manufacturing defects are known to cause high level of residual stresses (RS) in local zones of the product. RS control at some productions is performed on a selective basis. In this case the average (volumetric) level of RS is inspected, and local RS zones due to internal defects of the metal, as a rule, are not inspected and omitted. Besides, the location of these local zones and the method of their detection are unknown.

As a rule, RS control during the incoming inspection is not performed. For these reasons, during the very first years of products operation under the working load their “rejection” takes place. Process and metallurgical defects, causing the high level of RS in local zones of products at unfavorable combinations with stresses due to working loads, cause accelerated development of damages.

It is known that conventional NDT methods – X-ray, ultrasonic testing, the eddy-current method, magnetic powder and dye penetrant inspection – are aimed at searching and detection of pronounced defects located primarily on the products’ surface. Internal casting defects, various types of structural inhomogeneity as well as manufacturing process defects (welding, rolling, bending, heat treatment defects, etc.) remain undetected in products due to the lack of 100% quality inspection at most of the plants as well as due to imperfection of NDT methods applied. Moreover, these rejection standards of NDT methods used at products manufacturing plants are aimed at detection of defects with sizes that many times exceed those of metallurgical defects. For example, according to the norms of austenite pipes ultrasonic testing, the sizes of admissible defects do not exceed 25 mm in length and 0,3 mm in opening and depth. As practice shows, metallurgical defects of smaller sizes, when exposed to working loads, are the main sources of operational damages. In conditions of products operation practically all NDT methods are also aimed at detection of various-type discontinuity flaws with sizes significantly exceeding the size of defects that cause the development of damages.

Thus, it must be stated that the lack of RS inspection in order to detect stress concentrations on structural defects of products, both at manufacturing plants and during operation, is the lacking link in system of products NDT, which considerably reduces their safety and reliability.

Figure 1 shows the scheme of engineering products NDT arrangement that formed at present both at manufacturing plants and during operation. It can be seen in figure 1 that products inspection consists in the usual flaw detection without any assessment of stress concentration level on apparent (discontinuity flaws) and implicit (structural) defects. The lacking link in the NDT system is marked with a dotted line in figure 1.
The metal magnetic memory (MMM) method developed by Energodiagnostika Co. Ltd. (Moscow) becomes more practically implemented for solution of the problem of determination of local SCZs in new and operated products. Russian and International standards on the MMM method are published.

In accordance with ISO 24497-1:2007(E) “Non-destructive testing – Metal magnetic memory – Part 1: Vocabulary” the MMM method is a non-destructive testing method based on recording and analysis of distribution of self-magnetic leakage fields (SMLF) occurring on stress concentration zones (SCZs) and of structural inhomogeneity of products. In this case SMLF reflect the irreversible variation of magnetization in the direction of the effect of maximal stresses due to working (external) loads, as well as structural and process history of products and welded joints after their fabrication and cooling in the magnetic field of the earth.

The MMM method differs fundamentally from all known magnetic NDT methods by the fact that its application does not require artificial magnetization of the product, but it uses the natural magnetization and aftereffect that appears in the form of the magnetic memory of metal related to actual strains and structural changes.

The MMM method requires no preparatory works during the inspection and differs from other NDT methods by the fact that it indicates the level of stress concentration, i.e. it indicates the degree of the detected defects’ hazard.

During the industrial investigations it was also established that the magnetic memory of the metal on new ferromagnetic engineering products reflects their structural and process history.

Melting, forging, forming, heat treatment and welding are performed at metal temperatures significantly exceeding the Curie point (for iron-based alloys - approximately 760-770°C), when the residual magnetization disappears.

During subsequent metal cooling at the time of passing through the Curie point (T_c), when the magnetic permeability μ is maximum, products gain a high level of residual magnetization M_{res} even in a weak external magnetic field of the earth or a workshop (see figure 2).

1 SCZs are not only pre-known areas where the design features create different conditions for distribution of stresses caused by an external working load, but these are also randomly located areas, in which due to the initial metal heterogeneity combined with off-design additional workloads large strains occur.
As a result of this process, at which the energy of crystallization and thermal stress (external layers of products cool faster than internal) is by order higher than the external magnetic field energy, the residual magnetization distribution in products by magnitude and direction is determined by the product’s shape, its structural and process inhomogeneity. Thus, the structural and process history of the products metal due to the cooling process appears in the form of natural magnetization (magnetic memory of metal).

Let us further consider the MMM method’s capabilities at diagnostics of new and operated products in order to detect local SCZs – the sources of damages development.

Fig. 3 shows the inspection results of a new Ø22 mm (St.05Cr16Ni4Cu2BТ13) rod used for fabrication of the shaft of electrical centrifugal pump (ECP) manufactured at LLC “PC Borets” production works (Lebedyan’).
Figure 3, a shows the distribution magnetogram of the normal component of the self-magnetic leakage field H_p and its gradient dH/dx recorded in the stress concentration zone (SCZ) during scanning with the instrument sensor along one of the generating lines of the rod #2204.

Figure 3, b shows the metal’s structural state of the rod #2204 in the section that coincides with the SCZ. Figures indicate the micro hardness values along the line of a metallurgical defect and outside it.

Figure 4 presents the results of inspection by the MMM method of a new hydraulic turbine blade. Figure 4, a shows the distribution of the magnetic field H_p and its gradient dH/dx recorded during the inspection along the external surface of the blade. SCZ characterized by local variations of the field gradient is indicated in the bottom part of the magnetogram. Figure 4, b shows casting defects detected in the metal depth after cutting of the blade opposite the SCZ recorded by the MMM method on the external surface.

Figure 5 presents the results of inspection by the MMM method of a $\varnothing 42 \times 7$ mm pipe of steel 10Cr13G12BS2Ni2Cu2 cut out of the new power boiler platen superheater. Figure 5, a shows the distribution magnetogram of the self-magnetic leakage field H_p and its gradient dH/dx recorded in the SCZ on one of the pipe generating lines. Despite the fact that this pipe was fabricated of stainless steel that should be practically non-magnetic in the initial (as-fabricated) state, however, a ferrite phase, recorded during the inspection by the MMM method as a magnetic anomaly, formed in the local zone due to violations of its manufacturing technology. Figure 5, b shows the cracks detected on the internal surface of the pipe cut out from the zone of the magnetic anomaly that corresponds to the SCZ.

![Figure 3](image1.png)

![Figure 4](image2.png)

![Figure 5](image3.png)

Figure 4. Results of inspection by the MMM method of a new hydraulic turbine blade: a – distribution of the magnetic field H and its gradient dH/dx recorded during the inspection along the external surface of the blade; b – casting defects detected in the metal depth after cutting of the blade.
The presented in figures 3, 4 and 5 examples from the practice of the MMM method application on new products of various productions clearly demonstrate general drawbacks in organization of NDT at manufacturing plants. All the above-mentioned products were tested by the NDT system currently existing at plants. However, as it was noted above, at present most of the manufacturing plants lack the inspection for detection of metal defects beyond the standardized sensitivity limits of the applied inspection methods and means. Application of the MMM method, which reveals metallurgical and technological production defects in the form of magnetic anomalies corresponding to local stress concentration zones, would allow to ensure the 100% products inspection even in mass production.

During operation of engineering products the major sources of damages development are also local SCZs, the formation sites of which are practically impossible to predict by calculation methods. Application of the MMM method offers a unique opportunity to detect the local zones with maximum stress concentration at an early stage by means of performance of the 100% inspection of various equipment units.

For classification of magnetic anomalies, characterizing SCZs by the degree of their hazard in accordance with the technique described in [1], a comparison of all magnetic anomalies detected on a specific unit by the field gradient \(dH/dx \) value is performed.

For the same-type equipment units, based on the laboratory and industrial investigations, the limiting value of the field gradient is determined, at which a microcrack is formed and the damage development starts.

In accordance with the definitions presented in paper [2], the physical sense of the magnetic parameter \(dH/dx \) is that it reflects concentration (or density) of the magnetic energy in the product’s volume conditioned by the strain energy density.

The considered example of the MMM method application for detection of the local SCZ at an early stage of the damage development clearly demonstrates the significance and efficiency of its application in combination with other NDT methods. The experience of the MMM method application on different equipment under long-term operation in various industries shows that only 5 to 10% of the total metal volume reaches the limiting state (physical ultimate strength) and achieve the stage of damage development. Unfortunately, it is practically impossible to determine these local SCZs – the sources of damages development – by calculation methods. Such problem can be solved using the methods of early diagnostics (the MMM and AE methods).
During the analysis of products fracture mechanism determination of local zone dimensions (volume, area, length), at which the limiting state of the metal and the product itself occurs, is the most valuable. Exactly this challenge, that has so far been the subject of study on specimens in fracture mechanics, is solved using the MMM method directly on the equipment during the diagnostics of various units’ condition.

Bibliography
