Nondestructive Measurement of Cryogenic Fuel Tank Insulation at Kennedy Space Center using Neutron Methods

R. A. Livingston, U. Maryland
J. S. Schweitzer, U. Conn.
A. M. Parsons, NASA Goddard SFC
E.E. Arens, NASA Kennedy SC

12th Int. Symposium on Nondestructive Characterization of Materials
Blacksburg, VA June 23, 2011
Team Members

• NASA Goddard SFC
 – Larry Evans
 – Sam Floyd
 – Suzanne Nowicki
 – Min Namkung

• NASA Kennedy SC
 – Mike Csonka
Outline

• Introduction
• Fast/Thermal neutron analysis
• MCNP Simulations
• Mockup tests at Goddard SFC
• Conclusions
Diagram of Space Shuttle External Tank

Liquid Hydrogen (20.4 K, -423 °F)

Liquid Oxygen (90.2 K, -297°F)
KSC Cryogenic Storage Tank
ISSUES

• History of Perlite settling
• Discoloration in localized areas on tanks
• Increase in boil-off
• **Advantages:**
 - Provides efficient mechanism for analysis of large structures
 - Solar heating allows for visualization of internal structure due to the slower heating of components with larger thermal mass
 - Allows for visualization of areas of heat penetration (insulation voids)

• **Disadvantages:**
 - Results are based on discernable temperature differences and material emissivity
 - Results are dependent on environmental conditions

IR Thermal Imaging
Typical Perlite Composition

- Silicon dioxide: SiO_2 70-75%
- Aluminum oxide: Al_2O_3 12-15%
- Sodium oxide: Na_2O 3-4%
- Potassium oxide: K_2O 3-5%
- Iron oxide: Fe_2O_3 0.5-2%
- Magnesium oxide: MgO 0.2-0.7%
- Calcium oxide: CaO 0.5-1.5%
- Loss on ignition 3-5%
- Density
 - Expanded 6 lb/ft3
 - Compacted 16.5 lb/ft3
Prompt Gamma Neutron Activation (PGNA)

Capture \({\text{Neutron}} \rightarrow {\text{\(^{35}\text{Cl}}\)} \)

Excited State \(~10^{-14}\) seconds

Gamma–ray Emission \({\text{\(^{36}\text{Cl}}\)} \rightarrow 3\gamma \)
Point Source Gamma-ray Production

\[\gamma_i = n \sigma^i_a f^i y^i_k \phi_{th} \]

where:
- \(\gamma_i \) = gamma ray production rate, photons per second
- \(n \) = number density of atoms of element
- \(\sigma^i_a \) = neutron capture cross-section of \(i^{th} \) isotope
- \(f^i \) = abundance of \(i^{th} \) isotope
- \(y^i_k \) = yield of \(k^{th} \) gamma ray for \(i^{th} \) isotope
- \(\phi_{th} \) = thermal neutron flux, neutrons/cm\(^2\)· second
Point Source Gamma-ray Production

\[\gamma_i = n \sigma_{i,a}^i f^i y_{k,i}^i \phi_{th} \]

where:
- \(\gamma_i \) = gamma ray production rate, photons per second
- \(n \) = number density of atoms of element
- \(\sigma_{i,a}^i \) = neutron capture cross-section of \(i^{th} \) isotope
- \(f^i \) = abundance of \(i^{th} \) isotope
- \(y_{k,i}^i \) = yield of \(k^{th} \) gamma ray for \(i^{th} \) isotope
- \(\phi_{th} \) = thermal neutron flux, neutrons/cm\(^2\)·second
Fe, C, Ni, Cr
Stainless Steel
Perlite
Fe, C Carbon Steel
Moderator
Neutron Generator Tube
Liquid
Gamma-ray Detector
Digital Signal Processor
100110110101
Neutron Generator

\[D + T \rightarrow {}^4\text{He} + n \]

- Magnet
- Source cathode
- Source anode
- Gas reservoir
- Gas pressure control
- Ion source pulser
- Focus lens
- Accelerator lens
- Target
- High-voltage power supply
- High-voltage insulator
MP -320
Neutron Energies

- Neutron Generator \((D + T \rightarrow ^4\text{He} + \text{n})\) 14 MeV
- Thermal 0.025 eV
- Fast > 1 MeV
Fast/Thermal Neutron Interactions

- Prompt Gamma Neutron Activation
- Inelastic Fast Neutron Scattering
- Delayed Activation (radioactive decay)
Inelastic Fast Neutron Scattering

Incident Neutron

^{35m}Cl

Scattered Neutron

^{35}Cl

Gamma–ray Emission

γ

γ

γ
Elements Typically Detected

<table>
<thead>
<tr>
<th>PGNA</th>
<th>Inelastic</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Al</td>
<td>Fe</td>
<td>Al</td>
</tr>
<tr>
<td>K</td>
<td>Si</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Al</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Project Work Plan

• Phase 1: MCNP numerical simulations
• Phase 2: Measurements on test article at Goddard SFC
• Phase 3: Measurements on cryogenic tanks at Kennedy SC

Feasibility criterion: Detection of 120 cm thick void in perlite
MCNP Geometry
Neutron Parameters, Expanded Perlite

- Slowing-down length: 460 cm (15.1 ft).
- Thermal diffusion length: 238 cm (7.81 ft).
MCNP Simulations

- 24 Perlite layers @ 5 cm thick
- 10 μs time bins
- 260 energy bins
- 10^8 neutron time histories
- Variance reduction techniques
 - implicit capture
 - weight windows
 - Russian Roulette
 - Particle splitting
 - time cut-off
 - geometry cutoff
Inelastic, Expanded Perlite
Inelastic, Compacted Perlite

![Energy Spectrum Graph](image)
Total Inelastic Counts vs. Perlite Density

Line Fit: Counts = a + b * Density
Coefficient values ± one standard deviation
a = 52461 ± 440
b = 871.47 ± 43.4
R^2 = 0.997529
Inelastic Summary

- Acquisition time: 1 second
- Dynamic range: 39%
- Linearity: $R^2 = 0.999$
- Precision: 0.4%
Test Article, Goddard SFC

- Validate MCNP results
- Determine background level
- Optimize operating parameters
 - Counting time
 - Standoff distance
 - Neutron generator/detector separation
- Establish protocol for field measurements
Field Test at Goddard
Experimental Variables

- Perlite density (void, compacted, expanded)
- Standoff distance (35, 45, 55 cm)
- Neutron source / detector spacing (35, 45, 55 cm)
Perlite Densities

<table>
<thead>
<tr>
<th></th>
<th>Kennedy SC</th>
<th>Goddard SFC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 lb/cf</td>
<td>4 lb/cf</td>
</tr>
<tr>
<td></td>
<td>16 lb/cf</td>
<td>7 lb/cf</td>
</tr>
</tbody>
</table>
Test Article Preliminary Results

• Very weak correlation between total counts and Perlite density
• Si inelastic peak can discriminate between void and Perlite
• Si inelastic peak can be ambiguous between expanded and compacted Perlite
• Not possible to compare with MCNP simulations due to differing Perlite densities
Conclusions

• Compaction of Perlite insulation is affecting the performance of cryogenic fuel tanks at KSC
• Neutron methods are feasible for NDT of density variations because they are based on the number density of atoms
• Fast neutrons are more suited for measuring compaction, i.e. densities > 6 lbs/cf
• Thermal neutrons are suited for measuring voids, i.e. densities < 6 lbs/cf, if a lanthanum halide detector is used.
Thank you for your attention!

Richard A. Livingston: rliving1@umd.edu
LH2 Tank Construction

- 850 thousand gallon, double-walled, spherical tank
- Constructed in 1965
- Annular region filled with Perlite insulation and under vacuum
- Inner tank supported by 40 tie rods
- Outer tank reinforced with shell stiffeners
- Outer tank diameter is 70 feet, inner tank diameter is 63 feet
LOX Tank Construction

• 900 thousand gallon, double-walled, spherical tank
• Constructed in 1965
• Annular region filled with Perlite insulation and under slight nitrogen purge
• Inner tank supported by 165 tie rods
• Outer tank diameter is 69 feet, inner tank diameter is 63 feet
D-T Tube Moderator Geometry

Side View

End Cap
Tritium Target
Aluminum Tube

End View
Annulus
MCNP Simulations
(Monte Carlo N-Particle)

Thermal Neutron Flux, n/cm^2 s

End Cap Thickness, cm

Wall Thickness
- 0
- 5
- 10
- 15
- 20
Effect of Moderator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Without</th>
<th>With</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal diffusion length</td>
<td>238 cm</td>
<td>2.24 cm</td>
</tr>
<tr>
<td>Thermal neutron decay time</td>
<td>10.84 ms</td>
<td>168.4 µs</td>
</tr>
<tr>
<td>Thermal/total gamma counts</td>
<td>≈ 0</td>
<td>6%</td>
</tr>
</tbody>
</table>
PGNA, Expanded Perlite

![Graph showing pulse height spectrum vs. energy (MeV). Peaks and valleys indicate different elements and thermal effects.](image-url)
PGNA, Compacted Perlite