Identification of leakage in plate type Air Preheater using ultraviolet light test

K N Amin
Inspection Dept., GNFC Limited
9974706212, knamin@gnfc.in

C M Mulchandani
Inspection Dept., GNFC Limited
9898784984, cmmulchandani@gnfc.in

Abstract

In era of globalization and competitiveness, it has become important to run the industry either uninterruptedly or reducing the shutdown time of equipment/plant. This will not only increase the profit of company but also reduce the maintenance cost to a great extent. NDT plays a major role to reduce the breakdown/shutdown time of equipment and thereby of plant.

GNFC, a fertilizers and chemicals company, has established a well organized, fully fledged NDT laboratory to check the condition of any equipment and help the maintenance to carry out maintenance in more planned and organized manner with a view to reduce shutdown time.

A reformer, with air and gas circuits, is provided in Synthesis Gas Generation Unit plant. Passing of air was reported by operation group with an air leak rate of 2600 nm3/Hr from air path to gas path. It was judged that air was leaking only from plate type Air Preheater. There was no popular and established NDT method available to check the leaky area in plate type heat exchanger. GNFC has developed a complete test method using company developed fluorescent powder to identify the leaky locations in plate type Air pre-heater. A successful implementation of this innovative test method has reduced the leak rate from 2600 nm3/hr to 500 nm3/hr. This has postponed the management decision of replacing Air Pre-heater, costing Approximately Rs. 65 Millions.

1. Introduction:
- Process Overview:
 GNFC has Synthesis Gas Generation Unit (SGGU) plant, which was installed in 1998. A reformer is used for generation of reformed gas in SGGU plant. Natural gas and steam are being used to produce reform gas in this reformer unit. However, the reaction of natural gas and steam is endothermic in nature. Hence, it needs additional heat. This heat is supplied from 20 top fired burners which maintain @875°C temperature in the reformer house. These burners use flue gas and hot air as raw materials.

 The hot air needed for combustion in burners is being supplied from Forced Draft Fan (FD Fan, C-3403). The air from FD Fan passes through plate type Air Preheater where it achieves temperature of @460°C. This hot air supplied to burners where it ignites natural gas and finally produces combustion gas which supplies heat to reformer gas through reformer tubes. This combustion gas leaves reformer house and
passing through numbers of heat recovery units. Finally, it passes through Air Preheater and vent in to atmosphere (Stack, S-3401) using Induced Draft Fan (ID Fan, C-3402). Schematic diagram of process overview is as shown in Figure-1.

![Figure-1: Schematic diagram of process overview of Reformer](image)

- **Plate Type Air Preheater Detail:**
 - Pre-heater Tag No: F-3408
 - Service: Atmospheric Air & Combustion Gas
 - Nos. of modules: 05
 - Air inlet temperature: Atmospheric
 - Air outlet temperature: 460°C
 - Flue gas inlet temperature: 480°C
 - Flue gas outlet temperature: 160°C

![Figure-2: Schematic diagram of air & flue gas circuits in Air Preheater](image)

- **Failure History:**
 Plant operation group noticed high air consumption in the system in 2012. Temperature drop of outlet air in Air Preheater was @20°C also reported. Hence, one by one all unit operations checked for probable cause of high consumption of air. Finally, it was anticipated that air is short circuiting in Air Preheater.
Damage anticipated in Air Preheater which allows atmospheric air to short circuit to ID Fan through leaky module. This affects the complete process of plant in following ways:

- Heat loss in air pre-heater (Reduced efficiency of Air preheater)
- Increased load of FD fan
- Increased load of ID fan
- Increased NG consumption for flue gas in burner

A necessary simulation and back calculations were carried out before inspection and repair of Air Preheater. The report shows that leaked air flow was 2600NM3/Hr.

There was no popular and established NDT method to check the leaky area in plate type heat exchanger. A complete test method, using company developed fluorescent powder, was developed to identify the leaky locations in plate type Air Preheater.

SGGU FG CALCULATION FOR 18 Jan 2014

<table>
<thead>
<tr>
<th>Description</th>
<th>Calculation Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG Fuel (MW corrected)</td>
<td>NWm/hr</td>
</tr>
<tr>
<td>PG Fuel (MW corrected)</td>
<td>NWm/hr</td>
</tr>
<tr>
<td>CA flow to match O2 at u/s of APH</td>
<td>NWm/hr</td>
</tr>
<tr>
<td>Calculated FG Flow</td>
<td>NWm/hr</td>
</tr>
<tr>
<td>Total CA flow</td>
<td>NWm/hr</td>
</tr>
</tbody>
</table>

CALCULATION

<table>
<thead>
<tr>
<th>Description</th>
<th>DCS Data</th>
<th>Cal Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG Fuel</td>
<td>3415</td>
<td>3466</td>
</tr>
<tr>
<td>PG to burner</td>
<td>3419</td>
<td>3481</td>
</tr>
<tr>
<td>CA to burner (FI 3416)</td>
<td>3416</td>
<td>51600</td>
</tr>
<tr>
<td>FG l/l</td>
<td>3422</td>
<td>489.7</td>
</tr>
<tr>
<td>HS O2/l</td>
<td>3429</td>
<td>182.8</td>
</tr>
<tr>
<td>CA O2/l</td>
<td>3423</td>
<td>29.3</td>
</tr>
<tr>
<td>CA O2/l</td>
<td>3480</td>
<td>41.9</td>
</tr>
<tr>
<td>Leakage Air to match Al 3412</td>
<td>3416</td>
<td>2600</td>
</tr>
<tr>
<td>FG Analysis(Dry Basis)</td>
<td>Lab</td>
<td>Cal</td>
</tr>
<tr>
<td>APH u/s O2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>APH u/s CO2</td>
<td>9.8</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>8.7</td>
</tr>
</tbody>
</table>

2. **Preparation of fluorescent powder:**

R & D Department had prepared fluorescent powder using Alkaline earth oxide and Organic quinoline. Organic quinoline was dissolved in Methanol. This dissolved quinoline mixed with Alkaline earth oxide powder. Weight of Organic quinoline was kept 5% to 10% of total weight. Then mixer was dried in oven at 50°C ~ 60°C temperatures for 4 to 5 hours. After drying, mixer was grinded in grinder to reduce the mesh size to the possible extent and to break the pallets. Mesh size of this florescent powder was below 100 micron. The powder was also manufactured with a property such that it will show of green colour in ultraviolet light.
3. **Innovative NDT procedure:**

A hole of 2” dia. was made, to charge fluorescent powder, in air inlet duct of Air Preheater and as near as possible to Air Preheater. A nozzle with ball valve assembly was welded in this hole. A metallic pot, having a capacity of holding approximately 2.0 kg powder, was placed on top of this valve. Pot was filled with in-house developed fluorescent powder. The valve was opened and let powder settled in air inlet duct. Valve closed and FD Fan started to flow the heaped powder in air path for approximately 45 ~ 60 seconds. Powder passed from air path to flue gas path through leaky element of Air Preheater modules. Inspection using ultraviolet light was carried out on flue gas path side of the module. The leaky elements were identified using ultraviolet light instantly.

![Photo-1: Top of flue gas outlet side of one of the modules.](image)

![Photo-2: Photo after partial repair of few elements](image)

![Photo-3: Photo in ultraviolet light shows leaky elements of same module.](image)
Inspection using ultraviolet light was carried out from both flue gas inlet and outlet side of Air Preheater. Leakages were identified in all modules in flue gas inlet and outlet side. However, number of leaky elements on flue gas outlet side was less as compared to flue gas inlet side.

Close visual inspection of leaky elements revealed that seal welding of elements was opened up. Few plates of the element were found torn out from its seal weld. The maximum length of torn out plate was @ 125 mm and it had gone to a maximum depth of @ 20 mm.

4. Repair of leaky plates:

Repairing was carried out in damaged elements of modules on flue gas side. MOC of Plates is SS304 and thickness is about 1.2mm. Mechanical Workshop had carried out precise cleaning using special types of wire/power brush before welding to remove hard dust/deposits from the surface. Repair welding was carried out using 1.2 mm size filler wire of ER-308 using GTAW technique.

5. Result:

After repairing of elements, Air Preheater was taken in operation. Again simulation and back calculations were carried out after stabilization of plant. The report clearly indicated reduction in leaked air flow from 2600 NM³/Hr to 500 NM³/Hr.

![SGGU FG CALCULATION FOR 26-04-2014](image)

6. Acknowledgement:

We would like to thank management of Gujarat Narmada Valley Fertilizers Co. Ltd. for permitting us, and Non Destructive Evaluation–2015 committee for giving us an opportunity to share our experience of successful application of innovative and in-house developed ultraviolet light test method in this seminar.