Fuel Performance Evaluation
Bruce Power & OPG CANDU Stations

3rd International CANDU In-Service Inspection and NDT in Canada 2010 Conference, 2010 June 16
Introduction

Fuel Inspections

- Overview
- Equipment Currently in Use
- Irradiated Fuel Inspector Qualification and Training
- Inspection Procedures
- Technical Specifications
- Fuel Inspection Sheets

Bringing the Inspection Results into Service

- Overview
- Data
 - Trending
 - Flagging of artefacts / unusual observations
 - Feedback to station / Pressure Tube groups
- Fuel Performance Reporting
- Fuel & Fuel Channel Program
- Other analysis
 - Feed into PT scope of work
 - Waste management assessments
 - Mapping of fuel condition
 - Qualification of fuel designs

Limitations of NDE In-Bay Inspections

- Overview of current limitations
Introduction

- Improvements
- Design Limits
- Testing
- Design Concessions

- Incident analysis
- Safety analysis

- Defect and Incident Investigations
- Performance limits
- Operating Conditions
- Liaison with PT inspections

Design

Manufacturing

Operation

Fuel Handling

R & D

Waste Management

Fuel Integrity Degradation, Waste Fuel Handling

Fuel Performance
- Inspection
- PIE
Overview

- As per the yearly inspection plan, verify that fuel operating conditions are within the design limits

- Provide indirect information on the condition of the HTS, FC, and FH

- Provide a statistical measure of the condition of fuel in the core to verify that it is within the range assumed by safety analysis at the start of an accident

- Support incident investigations

- Provide information to determine the root cause of fuel defects

- Provide input for FC selection for PT inspections
Fuel Inspections

- Fuel bundles are inspected under water in the Irradiated Fuel Bay (IFB)
Fuel Inspections

- **Equipment**

 - **Handling tools**
 - **Debris collection tools**
 - **Bundle rotator**
 - **Under water periscope**
 - **Colour resolution standards**
Fuel Inspections

- Inspector Qualification and Training

- Level 1 Qualification
 - Fuel inspection course
 - ‘Hands-on’ training
 - 100 bundles inspected under the mentorship of a qualified inspector

- Level 2 Qualification
 - Develop experience in other areas
Fuel Inspections

- Inspection Procedures

- Ensure fuel bundles are being inspected in a systematic fashion

- Follow a set of prescribed steps

- Require inspectors to take specific photographs at specific times

- Require inspectors to record and photograph any unusual features
Fuel Inspections

- Technical Specifications
 - Provide visual benchmarks
 - Standardize the data obtained from inspections
 - Ensure artefacts are recorded consistently from station to station
 - Lead to creation of semi-quantitative data

How to record BMI and SSI on Inspection Sheet 01 (IS01):
Fuel Inspections

- Inspection Sheets

<table>
<thead>
<tr>
<th>Station-Unit:</th>
<th>Serial #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel:</td>
<td>Up or Downstream:</td>
</tr>
<tr>
<td>In-core positions:</td>
<td>No of e/p cracks:</td>
</tr>
<tr>
<td>Disch Date:</td>
<td>Inspected by:</td>
</tr>
<tr>
<td>Insp. Date:</td>
<td>Image #:</td>
</tr>
</tbody>
</table>

Fuel Inspection Sheet for 17 Element Fuel (Both sides of this form must be completed)

- Fuel Inspection Sheet
- 17 Element Fuel
- Both sides of the form must be completed

Diagram showing the layout of ELT 18 and ELT 1.
Overview

- Data and images are input, verified and stored in a centralized Fuel Inspection Database (FID).

- Use of a standard set of specifications enables semi-quantitative data to be defined that is sufficient for trending and analysis.

- Historical inspection records and images are retrieved and compared to new and/or unusual artifacts.

- To date, there is inspection data for more than 10,000 bundles stored in FID which includes over 400 confirmed defects.
Bringing the Inspection Results into Service

- Trending data

- Once entered and verified in the database, each bundle can be searched based on its inspection artefacts

- Each reactor unit can be mapped for inspected bundle populations

- Observable artefacts can be tracked and mapped

- This data forms the basis for compliance reporting

Distributions of inspected bundles are easily sorted with FID
Bringing the Inspection Results into Service

- Trending data

Distributions of artefacts occurrences can be tracked over time using FID.
Bringig the Inspection Results into Service

- Trending data

Distributions of artefacts occurrences can be tracked over time using FID
Bringing the Inspection Results into Service

- Flagging unusual artefacts
 - Feedback to station
 - OPEX searches
 - Trigger follow-up inspections

Unusual, or seldom seen artefacts will initiate numerous activities
Bringing the Inspection Results into Service

- Feeding into Pressure Tube Scope of Work
 - Debris fretting
 - Acoustic channels
 - Unusual interactions

Unusual scrapes indicating excessive interaction with the pressure tube
Bringing the Inspection Results into Service

- Compliance Reporting to the CNSC
 - CNSC S-99 requirement
 - CAN/CSA-N286.5-95 Section 6.7.2
 - Demonstrate adequate monitoring of the fuel condition
 - Verify that fuel condition meets the fuel design basis limits

Yearly reports are delivered to the CNSC confirming the fuel is operating within the design basis limits and that inspection results during the year were acceptable.
Bringing the Inspection Results into Service

- Fuel & Fuel Channel Program
 - Results are fed back through the F&FCP
 - Serves to provide Station with inspection highlights
Bringing the Inspection Results into Service

- Other Analysis – Waste Management

Data obtained over the years has assisted to validate numerous models and codes used in fuel integrity analysis.
Bringing the Inspection Results into Service

- Mapping of Fuel Condition

Generic Core Map of Debris or Debris Fretting Indications
(Number of bundles in FID discharged 2005-2009)

Legend:
- Total Occurrences 161
- Number of occurrences equal to or greater than 5
- Number of occurrences equal to or greater than 2 but less than 5
- Number of occurrences equal to or greater than 1 but less than 2
Bringing the Inspection Results into Service

- Other Analysis – Qualification of Fuel Designs

Semi-quantitative spacer pad wear data collected by inspectors over time has supported design changes such as the 37M bundle.
Limitations of In-Bay Inspections

- Harsh environment for equipment
 - equipment exposed to high radiation fields
 - no plastics, electronics, or parts requiring grease
 - glass lenses darken over time, reducing inspection quality
 - poor lighting
 - maintenance is difficult

Conditions in the IFB can make visual examination challenging at times (debris-covered periscope lens pictured here)
Limitations of In-Bay Inspections

- Inspection capability limited to NDE
 - DE can only be completed by shipment to AECL Chalk River for Post-Irradiation Examination (PIE)
 - PIE is very costly ($)
 - DE results take years
 - Efforts made to enhance in-bay capability
 - FEMER developed (Fuel Envelope MEasuring Rig)

Tools such as FEMER have been designed to enhance in-bay bundle profiling capabilities
Questions?

Joe St-Pierre
Associate Analyst
Fuel Performance & Design
AMEC NSS

4th Floor, 393 University Ave
Toronto, ON
M5G 1E6

416.217.2161
joe.st-pierre@amec.com