Overview of Improvements in Work Practices and Instrumentation for CANDU Primary Heat Transport Feeders In-Service Inspections

Olivier MARCOTTE1, Gilles ROUSSEAU2, Eric ROCHEFORT3

1 Nucleom; Québec, Québec; olivier@nucleom.ca
2 Hydro Québec; Bécancour, Québec; rousseau.gilles.A@hydro.qc.ca
3 Zetec; Québec, Québec; erochefort@zetec.com
Agenda

• Introduction
• Thinning – Feeder Bends
• Thinning – Grayloc Weld Area
• Cracking – Feeder Bends
• Cracking – Feeder Welds
• Conclusions
Introduction

• In-service degradation mechanisms in CANDU feeder piping system
 – Wall thinning
 • Flow accelerated corrosion
 – Cracking
 • Intergranular stress corrosion cracking
 • Low temperature creep cracking
CANDU Reactor face
Feeder Configuration
Feeder Configuration
Inspection Tooling Requirements

- Thinning at tight radius bends
- Thinning at Grayloc weld area
- Cracking at tight radius bends
- Cracking at Grayloc weld area

OBJECTIVES

- Meet the inspection specifications
- Inspection tool reliability
- Minimize radiation exposure
- Efficiency
THINNING – FEEDER BENDS
Thinning – Feeder Bends

• Initial Developments
 – Thickness gauge with templates
 • Slow process
 • Limited scope
 – Ontario Hydro’s four probe assembly
 • Efficient for easy access feeders
 • Encoded axially – hand operated
 • Limited coverage
Thinning – Feeder Bends

• METAR Bracelet
 – Developed by IREQ, contracted by Hydro-Quebec
 • Encoded axially – hand operated
 • Assembly of fourteen (14) 10MHz probes
 • Covers approx. 120° circumferentially
 • 0.03mm thickness measurement resolution
 • Accuracy to 1 micron with signal processing
METAR Bracelet System Components
Thinning – Feeder Bends

- METAR Bracelet
 - Limitations
 - Manually driven
 - Operator dependant
 - Inconsistent signals in relation to tooling adjustments
 - Equipment failures
Thinning – Feeder Bends

• Future Developments
 – Main Objectives
 • Automated tool
 • 360° coverage
 • Improved Repeatability
 • Improved data quality
 • Meet inspection specifications
New Bend Thinning Tool Prototype
THINNING – GRAYLOC WELD AREA
Thinning – Grayloc Weld

• SixPack Bracelet
 – Developed by OPG
 • Assembly of six (6) small transducers in a water wedge housing
 • Circumferentially encoded – hand operated
 – Limitations
 • Data collection difficult and poor repeatability
 • Highly operator dependent
SixPack Bracelet
Thinning – Grayloc Weld

• GAIT
 – Development by Kinectrics, funded by COG
 • Assembly of eight (8) small transducers in a water wedge housing
 • Circumferentially encoded – hand operated
 • Better coverage in intrados region
 • Improved repeatability
Thinning – Grayloc Weld

- GAIT
 - Limitations
 - Scanner assembly can be wobbly
 - Limited adjustment with respect to distance from the weld
 - Poor signal to noise ratio
Thinning – Grayloc Weld

• GRAVIS
 – Development funded by COG for weld cracking
 • Similar probe assembly as GAIT
 • Modular design
 • Circumferentially encoded, axial adjustments – automated
 • Highly effective (approx. 30 seconds per scan)
 • Much better worker safety, data quality and repeatability
GRAVIS Configured for Thickness Measurements
Thinning – Grayloc Weld

• GRAVIS
 – Limitations
 • Poor signal to noise ratio
 • Applicable only on Grayloc welds
Thinning – Grayloc Weld

- Future Developments
 - Main Objectives
 - Inspection over the weld cap
 - Two approaches:
 - Adaptive focal laws
 - Full matrix capture
Adaptive Focal Laws – Inspection over weld cap
CRACKING – FEEDER BENDS
Cracking – Feeder Bends

• Manual Inspection
 – Full circumference covered with 6 scans/passes
 • Qualified by CIQB in March 2010
 – Limitations
 • Manual operation – High dose intake
 • No recorded data
 • Limited reliability for second bends
Cracking – Feeder Bends

• Bend Cracking Crawler
 – Developed by Hydro Québec
 • Axially and circumferentially encoder – automated
 • Highly repeatable
 • Highly efficient (approx. 60 sites per day at G-2)
 • Qualified by CIQB in 2010
Cracking – Feeder Bends

- Bend Cracking Crawler – Eddy Currents
 - Developed by Hydro Québec
 - Used to confirm OD flaws
 - Same principles as UT Bend Cracking Crawler
Eddy Current BCC
CRACKING – FEEDER WELDS
Cracking – Feeder Welds

• Manual Inspection
 – Phased Array
 • PA required to inspect full volume
 • Circumferentially encoded – hand operated
 • Aligned jig for axial positioning
 – Limitations
 • Manual operation – High dose intake
 • Poor data quality, operator dependant
Manual Phased Array Weld Inspection
Cracking – Feeder Welds

• GRAVIS
 – Project funded by COG
 • Circumferentially encoded, axial index – automated
 • Highly efficient (approx. 1 or 2 minutes per scan)
 • Highly repeatable
GRAVIS Configured for Weld Cracking Inspection
Conclusions

- The use of automated tool as proven to be very efficient in-situ
- Extensive training critical for successful campaigns
- Cracking inspection now mature
- Future developments in bend and weld thinning can benefit from cracking development OPEX