The Battle of Carbon Steel

Advantages of Eddy Current Array over Magnetic Particle and Penetrant Testing for Inspecting the Surface of Carbon Steel Welds
Terence Burke

– Product Application Leader
 • Eddy Current (EC) and Bond Testing (BT)
– Based in Quebec City, Canada
– Responsible for:
 • New product development and marketing
 • Customer support
 • Application development
 • Product improvement
How to Inspect Carbon Steel Welds

• 3 possibilities
 – Magnetic Particle Inspection (MPI)
 – Penetrant Testing (PT)
 – Eddy Current (ET)
Magnetic Particle Inspection (MPI)
How Does MPI Work?
Advantages & Limitations

Advantages
- Surface and near-surface discontinuities
- Low cost, easy to use and safe
- Fast inspection
- No post-inspection cleaning
- Many inspectors available

Limitations
- Ferrous materials only
- Limited to small inspections
- Magnetic flux alignment is important
- Requires removing coatings and paint
- Discontinuity needs to be perpendicular to the magnetic field
Penetrant Testing (PT)
How Does PT Work?

• Pre-clean
• Apply penetrant
• Remove penetrant
• Apply developer
• Evaluate Indications
• Post-clean
Advantages & Limitations

Advantages
- Small surface discontinuities
- Visual representation
- Large areas
- Inexpensive method
- Many inspectors available
- Complex geometries

Limitations
- Open discontinuities only
- Chemicals and fumes
- Multiple processes
- Cleaning is very important
- Requires removing coatings and paint
- Bleeding errors
Eddy Current
(ECT)
How Do Eddy Currents Work?

• Back to basics:
 – When the wire is shaped into a coil, the interaction of each turn produces a global magnetic field around the coil.
 – This magnetic field oscillates at the same frequency as the current injected into the coil.
How Do Eddy Currents Work?

• Back to basics:
 – When this coil is placed over a conductive part, opposed alternating currents are generated; these are the eddy currents.
 – The eddy currents oscillate at the same frequency as the current injected in the coil but with a small delay; this is the phase lag.
How Do Eddy Currents Work?

• Back to basics:
 – If a defect in the part disturbs the path of the eddy currents, it creates a local magnetic field that changes the balanced condition of the system.
 – Such changes can be detected by monitoring variations of the coil impedance.

Top view:
Eddy current path and density
How Do Eddy Currents Work?

• Representation in impedance plane:
 – A coil in the air has an impedance, which results from a resistance and a reactance.
 – If the coil moves closer to a conductive material, the impedance of the coil changes (because of the eddy currents) and follows the Lift-off path.
 – When the coil is over the surface of the material, the impedance stabilizes to its sound value.
 – If the coil passes over a defect in the material, the impedance of the coil changes and follows the Crack path.
Conventional Eddy Current Probe
Eddy Current Array (ECA)
What is ECA?

• ECA is ECT
 – Same depth of penetration
 – Same probe configuration available (Absolute, reflection, etc..)

• Multiple ECT coil in one probe

• C-Scan imagery; allow to show information about all channel at the same time
Elements in ECA Probes

- Elements are the individual EC probes used to make the array probe.
- Any type of EC probe can be used as an element. For example:
 - Pencil probe:

 ![Pencil probe diagram](image)

 - Sliding probe:

 ![Sliding probe diagram](image)
C-Scan Representation

Before calibration

- To calibrate, the signal from each element is rotated in order to bring the lift-off signal to the horizontal axis of the impedance plane.

The process continues very quickly in order to process all the elements of the probe and create the first pixel in the C-scan.

By looking at the signal angle in the impedance plane, it is easy to differentiate a surface defect from a lift-off variation. However, the vertical C-scan represents both signals with similar colors.

When the defect signal nears vertical, it produces only a small color variation on the horizontal C-scan.

When there is no defect, the signal remains at zero in the impedance plane. Such signals produce a green color in the vertical and horizontal C-scan.

The second element data is acquired shortly after, during time slot 2, and generates a second pixel in the C-scan.

The lift-off signal changes to a negative signal in the C-scan, which corresponds to the signal on the vertical C-scan.
The elements show a horizontal lift-off signal in the impedance plane.

Defects have a strong vertical component.

Additional gain may be used on the Y-axis to increase the defect signal and improve the color contrast in the vertical C-scan.

After calibration

- Large lift-off variation may have a small positive vertical component, that creates a yellow color in the vertical C-scan. However, a small lift-off variation remains horizontal and is not seen in the vertical C-scan, which is very useful for defect detection.
- The defect is easily detected on the horizontal C-scan while the small lift-off variation is not seen.
ECA Advantages

- Time saving
- Large probe coverage
- Easy Imagery (C-Scan)
- Better POD
ECA Limitations

✓ Few Inspectors
✓ Training
✓ Lift-off Variations
ECA Probes

- Standard Probe
- Custom Probe
- Flexible Probe
- Dynamic Lift-off Probe
Comparison of Methods
Comparison of Methods

Eddy Current Arrays
- Simple to use (similar to ECT)
- Minimal surface preparation needed
- No de-magnetization or post cleaning required
- Not affected by weather conditions
- “Green” method

MPI, PT
- VERY simple to use
- Very clean and dry surface; needs paint or coating stripping
- Exterior test requires more preparation
- Environmental concerns (paint or coating removal and re-application, waste disposal)
Comparison (cont’d)

Eddy Current Arrays

- Reject Criteria (relevant or non-relevant indications)
- Excellent PoD on large surfaces & dirty cracks
- Instant results and Rapid coverage of large areas (high productivity)
- Encoded Scan capability
- Imagery and Archiving
- Post-Process Analysis

PT, MP

- Indications only; no reject criteria
- PoD highly dependant on surface preparation & crack cleanliness
- Pre and post cleaning (de-mag) time, dwell time
Other Examples

Carbon Steel Inspections
Replacement of Traditional NDT methods

ECA can be a good replacement of traditional NDT method such as Liquid Penetrant and Magnetic Particle, for surface defect detection. ECA can also be used without removing paint or thin coating on the surface.

Picture of Red dye penetrant indications

Eddy current array indications with red dye color palette
Stress Corrosion Cracking

SCC (Stress Corrosion Cracking) is a very good application where ECA can be used to replace conventional NDT method. This application consists of detecting surface cracks over carbon steel or stainless steel material.
Stress Corrosion Cracking
On buried carbon steel pipe
Stress Corrosion Cracking
On buried carbon steel pipe
Train Axle Inspection

Train axle inspection is also a very good application for ECA, MPI can be replaced by ECA for faster surface inspection and archiving possibility.
Conclusion
Thank You

Questions? Comments?