Total Focusing Method (TFM) for Automated Pipeline Girth Weld Inspections

NDT in Canada 2017
June 7, 2017

Ewen Carcreff (a), Rémi Lallement (b), Alan Caulder (b)
Larbi Hallal (c), Dominique Braconnier (a)

(a) The Phased Array Company (TPAC), 9365 Allen road, West Chester, Ohio, USA
(b) Advanced OEM Solutions (AOS), 8044 Montgomery road #700, Cincinnati, Ohio, USA
(c) The Pipeline Inspection Company (PINC), 9 rue des Ferroniers, 13800 Istres, France
Context

• Inspection of girth welds is crucial in the oil & gas industry
• Weld defects can be tragic for companies and the environment
• Each weld is inspected during new construction
• Automatic Ultrasonic Testing (AUT) is a quite common NDT method and included in standards (ASTM, API, DNV...)

Recent Girth Weld Incidents
Objective

- Evaluate the Total Focusing Method (TFM) for girth weld inspection
- Obtain flaw sizing results with TFM (flaw, depth and height)
 - The TFM imaging algorithm will be applied to data acquired with the Full Matrix Capture (FMC) technique
- Comparison with (P)AUT and destructive testing (Macrography)
- Practical considerations: Scan speed, etc.
Inspected Parts

- **Carbon Steel Pipes**
- **Diameter**: Ø24in/610 mm
- **Thickness**: 0.75in/19.1 mm
- **Longitudinal Velocity**: 5910 m/s
- **Transversal Velocity**: 3220 m/s
• **2 Phased array probes**: 60 elements, 1mm Pitch, 7.5 MHz
 • One probe on either side of the weld
• **Wedge angle** = 33.7°
• Shear waves used for defect detection
• Circumferential scanner
PAUT Instrument AOS OEM–PA 128/128

• **Super Fast Data Rate!**
 – 160 MB/s (for high frame rate)

• **Full-Matrix Capture (FMC)**

• **Total Focusing Method (TFM) (5 Different Styles):**
 – Standard TFM
 – Migration TFM
 – Advanced TFM
 – Adaptive TFM
 – TFMp

• **Utilizes GPU**
 – For faster TFM calculation speed

• **Open!**
 – Access raw data and low level parameters
Wave Modes: Pulse/Echo

Multiple Wave Modes can be processed in parallel with one FMC acquisition!
Wave Modes: Pitch/Catch

TT

LL

T-TT

L-LL

TT-TT

LL-LL

NDT in Canada 2017 Conference (June 6-8, 2017)
Zonal Discrimination

*Drawing from ASTM E1961-11
Zonal Discrimination

Phased Array Probe 4

Phased Array Probe 1

NDT in Canada 2017 Conference (June 6-8, 2017)

10
TFM Benefits vs. Zonal Discrimination

- Any zone of the weld can be imaged, so misalignment of the probe in reference to the weld will not affect scan results.

- The TFM resolution can be defined arbitrarily. In this case, 0.1mm was chosen which provided a good compromise between image resolution and reconstruction complexity.

- Since we have the full data set, we can obtain complimentary views.

- All views are done with one (FMC) data capture.

- With all views, a 6dB drop sizing function can be applied volumetrically (in 3D).

- The data can be reprocessed at any time with a change of parameters. Examples are material velocity and wave modes like TT, LL, TTT...etc.
• Upstream Side – Pulse/Echo
DNV Cal Block: Fusion Line
DNV F.L. Cal Block: TFM Results

• Upstream Side – Pulse/Echo
Lack of Fusion Flaws

Lack of Fusion

Lack of Fusion
TFM Results C1: XZ View (B-Scan)

Theoretical weld bevel

Lack of Fusion
TFM Results C1 : XY View (C–Scan)

Lack of Fusion

NDT in Canada 2017 Conference (June 6-8, 2017)
TFM Results C1: YZ View (D-Scan)

Side view

Lack of Fusion
Flaw Sizing from XZ view (B-Scan)

TFM Automated Sizing Results
Macrography results of the First Coupon

Lack of Fusion flaws
Macrography Results (First Coupon)

<table>
<thead>
<tr>
<th>Value</th>
<th>Macrography</th>
<th>AUT</th>
<th>TFM (TTTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (mm)</td>
<td>15.60</td>
<td>17.0</td>
<td>15.60</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1.30</td>
<td>1.6</td>
<td>1.24</td>
</tr>
<tr>
<td>Error in height (%)</td>
<td>-</td>
<td>23.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

NDT in Canada 2017 Conference (June 6-8, 2017)
Macrography (Second Coupon)

Lack of Fusion (Root Area) with misalignment
Lack of Fusion (Root Area)
TFM Results C2: XY View (C-Scan)

Lack of Fusion (Root Area)

NDT in Canada 2017 Conference (June 6-8, 2017)
TFM Results C2: XZ View (B-Scan)

Root Edge
TFM Results C2: YZ View (D-Scan)

Lack of Fusion (Root Area)
Flaw Sizing from XZ view (B-Scan)

TFM Automated Sizing Results

NDT in Canada 2017 Conference (June 6-8, 2017)
Macrography Results (Second Coupon)

![Macrography Images](image)

<table>
<thead>
<tr>
<th>Value</th>
<th>Macrography</th>
<th>AUT</th>
<th>TFM (TTTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (mm)</td>
<td>root</td>
<td>19.1</td>
<td>18.10</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>0.45</td>
<td>2.2</td>
<td>0.77</td>
</tr>
<tr>
<td>Error in height (%)</td>
<td>-</td>
<td>388.9</td>
<td>71.1</td>
</tr>
</tbody>
</table>
Flaw Sizing Results Comparison

Lack of Fusion (Volumetric):

<table>
<thead>
<tr>
<th>Value</th>
<th>Macrography</th>
<th>AUT</th>
<th>TFM (TTTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (mm)</td>
<td>15.60</td>
<td>17.0</td>
<td>15.60</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>1.30</td>
<td>1.6</td>
<td>1.24</td>
</tr>
<tr>
<td>Error in height (%)</td>
<td>-</td>
<td>23.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Lack of Fusion (Root):

<table>
<thead>
<tr>
<th>Value</th>
<th>Macrography</th>
<th>AUT</th>
<th>TFM (TTTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (mm)</td>
<td>root</td>
<td>19.1</td>
<td>18.08</td>
</tr>
<tr>
<td>Height (mm)</td>
<td>0.45</td>
<td>2.2</td>
<td>0.78</td>
</tr>
<tr>
<td>Error in height (%)</td>
<td>-</td>
<td>388.9</td>
<td>73.3</td>
</tr>
</tbody>
</table>

NDT in Canada 2017 Conference (June 6-8, 2017)
Next Step FMC/TFM

- FMC/TFM Results with Long Seam

- Advantages
 - Easy flaw location
 - Multiple Wave Mode analysis & 3D display: easy flaw characterization
 - More reliable data analysis
Summary of Results

- 4 Girth welds were tested with FMC/TFM
- 27 Imaged defects from US and DS
- TFM provided superior flaw height accuracy over AUT
- Flaw detection efficiency was achieved by TFM due to its ability to produce multimodal imaging
- Sizing can be achieved volumetrically/in 3D
- Overall, the results of sizing from TFM proved more precise than with conventional AUT
• Based on the results achieved with this study, industry would benefit greatly from implementing an automated FMC/TFM inspection procedure for girth weld inspections.