International Symposium (NDTCE 2003) NonDestructive Testing in Civil Engineering 2003  
Start > Contributions >Lectures > Materials 2: 
Nondestructive Monitoring of Setting and Hardening of Portland Cement Mortar with Sonic MethodsThomas Voigt, Northwestern University, Evanston, USASurendra P. Shah, Northwestern University, Evanston, USA AbstractThe setting and hardening process of concrete is considered to be the most critical time period during the life of a concrete structure. Previous research has been conducted on an ultrasonic wave reflection method that utilizes a steel plate embedded in the concrete to measure the reflection loss of shear waves at the steelconcrete interface. The reflection loss has been shown to have a linear relationship to compressive strength at early ages. A procedure for strength prediction based on measured loss has been developed. The presented investigations continue this research by examining the fundamental relationship between the reflection loss, measured with shear waves, and the hydration kinetics of Portland cement mortar, represented by setting time, dynamic elastic moduli, compressive strength and degree of hydration. Dynamic elastic moduli are measured by fundamental resonant frequency and ultrasonic pulse velocity using compression and shear waves. Degree of hydration is determined by thermogravimetric analysis and adiabatic heat release. The water/cement ratio was varied for the tested mixture composition. The results presented herein show that compressive strength, dynamic shear modulus and degree of hydration have a linear relationship to the reflection loss for the tested mortars at early ages. This trend indicates that test methods based on measuring dynamic shear moduli have the ability to measure mechanical properties microstructural changes that determine early age properties of hydrating cementitious materials. The presented results validate and verify the previously developed strength prediction procedure based on the shear wave reflection method. IntroductionThe nondestructive, insitu testing of earlyage concrete properties is a crucial tool for the progress of many construction projects in the building sector. The application of such techniques can establish the earliest possible form removal from concrete construction elements, thereby opening highways to traffic, releasing prestress from steel reinforcement, or applying posttensioning with greatest efficiency. A nondestructive, ultrasonic technique, which measures the reflection loss of ultrasonic shear waves from the concrete surface, was developed at the Center for Advanced CementBased Materials at Northwestern University [1]. The focus of this research is to develop a nondestructive field sensor for insitu monitoring of the setting, hardening, and strength gain of cementitious materials. The research conducted so far has shown that the wave reflection method is sensitive to and can measure the hydration progress of cementitious materials. The differences in the hydration rate caused by factors such as retarding or accelerating admixtures can be detected reliably [1]. The experiments have also indicated that the method is able to follow the compressive strength gain of the test material [2], [3]. The investigations presented in this paper are aimed at studying the fundamental relationship among evolving microstructure, mechanical properties, and ultrasonic wave reflection measurements. The reflection loss measured with shear waves can theoretically be related to shear modulus. The development of shear modulus with time is related to how the microstructure of hydrating cement evolves as a result of curing. Experiments are designed to elicit this fundamental understanding. The hydration behaviour of different cement mortar mixtures will be investigated by the wave reflection method and alternate test methods. The comparison of the test results will yield the material parameters that govern the measured reflection loss. Wave Reflection MethodThe wave reflection method monitors the reflection loss of ultrasonic shear waves at an interface between a steel plate and a cementitious material over time. The amount of the lost wave energy depends on the reflection coefficient, which in turn is a function of the acoustical properties of the materials that form the interface. A schematic of the experimental technique is shown in Fig. 1. A steel plate is embedded in the concrete. A transducer with a center frequency of 2.25 MHz, which is attached to the steel plate, transmits a shear wave pulse into the steel. The pulse undergoes a multiple reflection process, which is shown in Fig. 1.
The transducer transmits a pulse into the steel plate (Fig. 1a). When the concrete is in liquid state the pulse is entirely reflected at the steelconcrete interface, since shear waves do not propagate in liquid materials (Fig 1b). With progressing hydration, the microstructure built up by the hydration products allows the shear waves to propagate into the concrete: the pulse is partially reflected and transmitted at the steelconcrete interface (Fig 1c). The reflections are received by the transducer and used for the calculation of the reflection loss. The pulse transmitted into the concrete attenuates and is not further evaluated. The described reflection process repeats several times until the transducer transmits a new pulse. After transforming the received signals from time domain into frequency domain, the reflection loss can be calculated from the difference between the amplitudes of the first and second reflections. In this paper the reflection loss will be expressed in decibel and describes the reduction in amplitude of the traveling shear wave due to transmission losses at the steelconcrete interface. The complete numerical procedure for calculation of the reflection loss can be found in [2].
The experimental setup, which is used for the wave reflection test is given in Fig. 2. It basically consists of a laptop computer, a pulser/receiver, a transducer and, a steel plate. The transducer, which generates the ultrasonic waves, is connected to the computer via the pulser/receiver. This unit excites the transducer and transmits the information of the received reflections from the transducer to the computer. The setup shown in Fig. 2 is capable to measure the reflection coefficient at two separate channels. Consequently, by using two transducers, the reflection loss can be measured simultaneously at two different points at the specimen or structure. Experimental ProgramThe experimental study was conducted on cement mortars containing Portland cement type I (after ASTM C150) and silica sand as fine aggregates. The cement mortar was tested in three different watercement ratios: 0.35, 0.5, 0.6. The mixture composition of the mortars is given in Table 1.
To determine the hydration behaviour of the mortar mixtures the reflection loss and three alternate material parameters were measured: compressive strength, dynamic shear modulus and degree of hydration. The tested materials were cured at a constant temperature of 25°C throughout the duration of the experiments.The conducted experiments and their results are described in the following paragraphs. Reflection Loss
Compressive Strength
Dynamic Shear Modulus
Degree of Hydration
w_{n}/c  nonevaporable water per gram original cement
w_{n}/c_{complete}  nonevaporable water for complete hydration Relationship between Reflection Loss and Compressive StrengthThe relationship between compressive strength and reflection loss was already established previously in [2] and [3]. It was found that both parameters are linear related for mortars and concretes with varying composition and curing conditions in a time range of up to four days. The linearity of this relationship could be reproduced for the mortars tested in this study. Due to the very early start time of the compressive strength tests (around initial set) an additional feature of the strengthreflection loss relationship (SR_{L} relationship) could be identified.
It is assumed that the bilinear behaviour of the SR_{L} relationship is attributed to changes in the growth characteristic of both parameters: reflection loss as well as compressive strength. As shown in Fig. 7, the SR_{L} relationship exhibits a strong bilinear pattern, dividing the relationship into two parts. The first part at very early ages has a clearly lower slope compared to the second part of the relationship at later ages. The slope changes at a certain time, which is 10.5 hours for the shown mortar with w/c = 0.5. It was observed, that the time of transition (t_{trans}) between the two slopes changes with the kinetics of the strength gain. The low w/cratio (0.35), which corresponds to a faster increase in strength, shows an earlier transition time, whereas the high w/rratio (0.6) shows a later transition time, respectively. Relationship between Reflection Loss and Dynamic Shear ModulusThe relationship between the dynamic shear modulus and reflection loss is an essential part for understanding how the wave reflection measurements are related to fundamental material parameters. The reflection loss is an expression of the reflection coefficient at the steelmortar interface. The reflection coefficient measured with shear waves can theoretically be related to the shear wave velocity of the tested mortar (Eq. 3 and 4). By knowing the acoustic impedance of the used steel plate the dynamic shear modulus of the mortar can be calculated (Eq. 5). It will be analyzed in the following how the dynamic shear modulus calculated from reflection loss G_{r} is related to the dynamic shear modulus measured by fundamental torsional resonant frequency G_{tors} (Eq. 6).
r  reflection coefficient The comparison of G_{r} and G_{tors} in time for the mortar with w/c = 0.5 is shown in Fig. 8. First, it can be noted that both curves have a similar shape. The differences in the absolute values of G_{r} and G_{tors} can be explained by the following theory: The wave reflection loss measures the properties of the material located next to the steel plate. It is assumed that only the cement paste properties influence the reflection loss. In contrast to that, the resonant frequency method measures bulk properties of the tested mortar. Based on that theory, G_{r} represents the properties of the cement paste only whereas G_{tors} is a function of the bulk properties of the mortar. The relationship between G_{r} and G_{tors} is given in Fig. 9. The linear trend indicates that the reflection loss strongly depends on the evolution of the dynamic shear modulus and consequently measures an important mechanical material property.
Relationship between Reflection Loss and Degree of HydrationThe degree of hydration is one of the most fundamental material parameters of a Portland cement mortar. It describes the progress of the hydration reaction and is a governing parameter for many mechanical mortar and concrete properties. The development of the degree of hydration and the reflection loss in time for the mortar with w/c=0.35 is given in Fig. 10. It can be seen from the figure that both quantities have a very similar trend over the time period of ca. 80 hours. The relationship between degree of hydration and reflection loss is given in Fig. 11. The presented data show a very strong linear trend over the entire period of time that is plotted. The same linear trend exists for the other two mortars tested in this study. It was also found that the slope of the relationship changes with w/cratio, where a low w/cratio corresponds to a high slope.
The degree of hydration was calculated from the amount of the nonevaporable water (Eq. 1 and 2) in the cement paste. This parameter in turn yields information about microstructural parameters of the cement paste e.g. capillary porosity, gel pores and gel volume. This analogy underlines the great potential of the wave reflection method to measure the evolution of fundamental material properties. ConclusionsFrom investigations presented in this paper the following conclusions can be drawn:
Literature

