OEM worldwide patented PA UT for Automated UT Industrial applications

FAAST-PA delivers high speed inspection for Tubes, Plates, Bars/Billets, Rail, Turbine discs and more...

More info about this article: http://www.ndt.net/?id=25294
SUMMARY

I
SOCOMATE INTERNATIONAL OVERVIEW

THE PHASED ARRAY FAAST-PA TECHNOLOGY

II
INSPECTION OF BARS & BILLET

INSPECTION OF TITANIUM & ALUMINIUM PLATES

III
INDUSTRIAL REFERENCES USING FAAST-PA
Socomate International overview

- Created in 1977, based in France
- 40 years experience in NDT environment for UT inspection
- Core Business: development of high-end UT Electronics
- Worldwide Sales: over 40 countries
- Design, manufacture and provide OEM UT Electronics
- Conventional UT and PA UT Instruments for custom systems manufacturers
Socomate International product range

SOCO-I-UT

SOCO-8S-UT

SOCO-8P-UT

Socoscan-PA

FAAST-PA

- Common DLL for Conventional and PA UT working with any languages on windows 7 and 10
- OEM stand alone products, working with Ethernet connection
- Worldwide patent on FAAST-PA
What are the differences between Conventional PA and FAAST-PA?
What are the differences between Conventional PA and FAAST-PA?
Bars and Billets Inspection using FAAST-PA
Bars/Billets Inspection - Context

INTERNAL FLAWS

SURFACE FLAWS (LONGITUDINAL CRACKS)
Bars/Billets Inspection – Inspection’s Principles

- **0° SHOT**
 - **INTERNAL FLAWS**

- **OBLIQUE SHOTS (CW+CCW)**
 - **SURFACE FLAWS (LONGITUDINAL CRACKS)**

> **A CONVENTIONAL PHASED ARRAY INSTRUMENT WILL REQUIRE 3 SEQUENTIAL SHOTS TO COVER THE FULL INSPECTION**
Bars/Billets Inspection – FAAST-PA Solution

- **FAAST-PA Inspection**: Only one shot is required for multiple angles.

- In this configuration, FAAST acquisition is 3 times faster than conventional PA.
Bars/Billets Inspection – Comparison between solutions

Use of a 1D Linear Probe R60
Bars/Billets Inspection – Comparison between solutions

FBH detection

CONVENTIONAL PA

- SNR=24dB
- FBH
- No Defect

FAAST MULTI-ANGLE SHOT

- SNR=22dB
- FBH
- No Defect
Bars/Billets Inspection – Comparison between solutions

Notch detection

CONVENTIONAL PA

SNR>28dB

Notch

No defect

FAAST MULTI-ANGLE SHOT

SNR=24dB

Notch

No defect
Titanium Plate Inspection using FAAST-PA
Titanium Plate - Context

- Detection of flaws at different depths
- Looking for 0.8mm FBH
- From 15mm to 185mm with defects at: 15, 25, 40, 80, 135, 185

- Material: Titanium TA6V
- Probe: 1D linear PA, 10MHz
Titanium Plate – Inspection using conventional PA

- The principle of conventional PA is the use of different US focused beam for each zone.
- This require several sequential shots which lead to time consuming.
Titanium Plate - Inspection using conventional PA

Sequential Unifocal Shots

<table>
<thead>
<tr>
<th>Shot 1</th>
<th>Shot 2</th>
<th>Shot 3</th>
<th>Shot 4</th>
<th>Shot 5</th>
<th>Shot 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>F1</td>
<td>F2</td>
<td>F3</td>
<td>F4</td>
<td>F5</td>
</tr>
<tr>
<td>Receptions</td>
<td>L1a</td>
<td>L2a</td>
<td>L3a</td>
<td>L4a</td>
<td>L5a</td>
</tr>
</tbody>
</table>

\(F_i = \text{Optimal Focale for FBH n° } i \)
Titanium Plate– Inspection using FAAST-PA

➢ Based on FAAST-PA, one shot is required for multiple depth focusing

Probe

Shot 1

Probe

Shot 2

Probe

Shot 3

...
Titanium Plate—Inspection using FAAST-PA

- Example of FAAST-PA using Multiple focal within 1 US Shot

- Multi-focus Transmission + DDF Reception ➤ Advanced DDF

Multi-focus Shot

DDF Receptions
Titanium Plate - Results Comparison

CONVENTIONAL PA

- FBH 15 mm
 - SNR = 38 dB
 - Noise

FAAST ADVANCED DDF

- FBH 15 mm
 - SNR = 38 dB
 - Noise
Titanium Plate - Results Comparison

CONVENTIONAL PA

FBH 185 mm

SNR=20dB

Noise

FAAST ADVANCED DDF

FBH 185 mm

SNR=19dB

Noise
Aluminium Plate Inspection using FAAST-PA
Aluminium Plate – Context

Mechanical scanning speed: 700mm/s

Maximum PRF 800Hz (limited by ghost echoes)

Pitch: 1mm with 3 dB repeatability

Specification:

1,2mm FBH

From 1,5mm to 190mm
Aluminium Plate - Laboratory results

- Aluminium block test with FBH Ø1.2mm

Near zone detection

SNR = 18 dB
Aluminium Plate – Laboratory results

- Aluminium bloc test with FBH Ø1.2mm

Deep zone detection

SNR=17dB

FBH 163mm

FBH 163.5mm
Aluminium Plate – On-site results

- **ALUMINIUM PLATE WITH FBH Ø1.2MM**

 - FBH 22 mm
 - SNR = 26 dB

 - Virtual Probes

 - C-SCAN

 - FBH 22 mm

 - Noise

 - MECHANICAL SCAN
Aluminium Plate – On-site results

C-SCAN
Virtual Probes
FBH 190mm
Noise

FBH 190mm
SNR=26dB
Aircraft turbine discs using Multi-zone process

- Use of multi-focus and multi frequency with only one 128 elements 2D matrix PA probe 10MHz
- High speed rotating inspection
- **Specification:**
 - Titanium
 - 0.4mm FBH
 - From 2.5mm to 140mm
 - Inspection of 7 zones in 2 shots
OCTG seamless tubes overview

- Use of Multi-angle, Multi-frequency and Multi-beam acquisition mode using 1D & 2D Matrix PA probe
- 1D: Lamination and Wall thickness
- 2D: Flaw detection

Specification:
- Transverse, Longitudinal, all oblique flaws inner and outer
- Real time to inspect 100%
- 1,5m/s rotating tube
- 58mm pitch
Rail inspection at high speed

- Use of Multi-angle acquisition mode using 1D Linear probe and conventional
- 1 probe, up to 16 directions in one single shot and processing signals in real time

Specification:

- 72 km/h
- Inspection pitch: 4mm
- 1 Linear probe for 8 directions,
- 1 conventional for 0°, 55° and 70° offset
High precision tube

- Use of Multi-angle acquisition mode using Bi-linear Phased Array ring probe
- 1 probe for Transverse, Longitudinal, inner and outer flaw detection

Specification:
- Minimum flaw depth of 5% of Wall thickness
- Range from 15 to 50mm
- Thickness range from 1 to 4mm
- Linear speed of 15m/min
- 4 ring probes to fully inspect the tube
Thank you for your attention & participation

Any Questions?