Experimental study of ultrasound excited lock-in thermography

Wang Yang, Liu Hui and Liu Junyan

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 15001, P.R.China

Corresponding Author: Liu Hui Ph.D, School of Mechatronics Engineering, Harbin Institute of Technology, 422 Postbox, Harbin, Post Zip: 150001, P.R.China, Tel: 86+451+86414557 or 86+451+86413257 Email: liuhuiamuer@sina.com or huiliuamuer@yahoo.cn

1. Abstract

Ultrasonic excited lock-in thermography (ULT) is a novel efficient nondestructive testing (NDT) technique. When amplitude modulated ultrasound waves are launched into sample, defects are heated up selectively. Effects of inhomogeneous heating can be suppressed compared to optical excited lock-in thermography (OLT). Signal to noise ratio is improved obviously. Thus sensitivity and detectability of defect are enhanced.

In this paper Experiments are carried out to inspect samples with fatigue cracks and effects of modulated frequency are investigated by ULT. The mechanism of heat generation is demonstrated. Specific optimized frequency can be acquired in different depth of defects with the same size. The relationship between modulated frequency and depth is analyzed. This experimental research is helpful for quantitative approach in NDT.

Keywords Nondestructive testing lock-in thermography ultrasonic excited, modulated frequency

2. Appends

The Fig.1 shows the structure of artificial defects specimen

20mm

10mm

20mm

crack

fatigue crack

(a)

120mm

20mm

10mm

20mm

5mm

detects

(b)

Fig.1 The structure of specimen

The Fig.2 shows the Cedip Lock-in thermography system and excited source of modulated ultrasound.
The Fig. 3 shows amplitude modulated ultrasonic excitation method and ultrasound excitation generates thermal waves in the defect.

Through changing modulated frequency, phase angle images are obtained from phase image sequences when defect is in certain depth. The relation between phase angle differences and modulated frequency is obtained for specific type and depth of defect by ULT.

Experimental results show that there exists an optimized modulated frequency for maximum phase differences at a certain depth of the defect. However, when the depth of defect is increased up to certain value, the maximum phase angle differences of defect and non-defect areas are too small to being detected.