Numerical study of laser line thermography for crack detection at high temperature

by Nithin Puthiyaveettil1, Renil Kidangan1, Sreedhar Unnikrishnakurup2, C V Krishnamurthy1, Mathias Zeigler2, Philipp Myrach2 and Krishnan Balasubramaniam1

1 Centre for Non-Destructive Evaluation, Mechanical Engineering Department, IIT Madras, India
2 BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany

nithinvengara@gmail.com

Abstract

The detection of cracks before the failure is highly significant when it comes to safety-relevant structures. Crack detection in metallic samples at high surface temperature is one of the challenging situations in manufacturing industries. Laser thermography has already proved its detection capability of surface cracks in metallic samples at room temperature. In this work a continuous wave (CW) laser is used to generate a laser, which is used to scan the metal surface with a notch. The corresponding heat distribution on the surface is monitored using infrared thermal (IR) camera. A simplified 3D model for laser thermography is developed and validated with experimental results. A dedicated image processing algorithm developed to improve the detectability of the cracks. To understand the dependency of surface temperature, laser power, laser scanning speed etc. in defect detection, we carried out parametric studies with our validated model. Here we report the capability of laser thermography in crack detection at elevated temperature.

Keywords: Thermal contrast, Laser Thermography, FEM, Elevated temperature, Surface cracks

1. Work details

The commercial Finite Element (FE) package was used for the numerical modeling of heat transfer phenomena during a laser line heating. The model was developed using a rectangular block of steel with a 100 mm length, 100 mm width and 40 mm thickness. The objective of this work is to develop numerical models which can address the effect of a laser line heating on a sample. When the defect introduced in the model, the heat transfer phenomenon is altered. This phenomenon is handled as an obstruction for the heat flow in the numerical model. Influence of parameter on thermal contrast studied.

Fig.1 shows the increase in maximum surface temperature with different laser power. Both experimental and modeling results are shown in the plot. Both results are showing compromising results. When the laser power increases, increase in surface temperature is linearly increasing. Temperature dependency on process parameter are studied.

- Thermal contrast is decreasing with increasing surface temperature
- Thermal contrast is increasing with increasing laser power
- Thermal contrast is decreasing with increasing scanning speed

Fig.1 Increase in maximum surface temperature with different laser power

Fig.2 Thermal contrast Vs surface temperature
Acknowledgements:

This work is financially supported from Indo-German Science and Technological Centre (IGSTC) under the project entitled Advanced Manufacturing Process Monitoring using in-line LASer Thermography (AMPLAST).

REFERENCES


