Improving NDE Reliability through Performance Demonstration and Attention to Human Factors

Mark Dennis, EPRI
Sr. Project Manager, NDE

Steve Swilley, EPRI
Program Manager, NDE

Greg Selby, EPRI
Director, NDE
Effectiveness and reliability of nondestructive examination

- History of improvement in NDE qualification
 - Today: performance-based qualification
 - PDI and SGMP
 - Three-party agreement on IGSCC
 - Evidence of NDE shortcomings
 - Starting point: administrative qualification

- Technology development

Performance issues in the field

Guideline to improve performance

Summary
History of improvement
The starting point: administrative qualification

• Qualification up to 1983
 – Personnel: qualified according to ASNT requirements
 • American Society for Nondestructive Testing documents ASNT-TC-1A and, later, CP-189
 • Employer-specific written tests and limited practical tests, not related to specific procedures
 – Equipment: none
 – Procedures: none

ASME Section XI:
 • Had to be able to calibrate
 • Limited guidance on equipment selection
History of improvement

Early 1980s: Growing evidence of poor capability

- Programme for Inspection of Steel Components (PISC)
 - International program (included NRC)
 - PISC-1 showed poor performance by ASME Code techniques for RPV examination
- Pipe Inspection Round Robin (PIRR)
 - Large study by NRC-RES
 - Piping (stainless, ferritic, cast stainless)
 - Showed poor performance on stainless and cast
- BWR recirculation piping at Nine Mile Point
 - Pipes leaked; cracks not detected
History of improvement

1980s: Growing evidence of SG Degradation

- PWR Steam Generator Tubing
 - Leaker outages were common
 - Many forms of degradation were prevalent
History of improvement

Mid-1980s:

Shift to performance-based qualification

- Pipes removed from Nine Mile Point Unit 1
 - Collaboration between NRC and EPRI
 - Blind UT examination by several vendors and utilities
 - Poor result: many missed cracks, many false calls
- The original IGSCC qualification program
 - I&E Bulletins 82-03 and 83-02
 - Three-Party Agreement between NRC, EPRI, and BWROG
 - Defined the qualification test
 - Chiefly addressed personnel
 - Three-year requalification requirement
History of improvement

Late 1980s:
ASME adopts performance-based qualification

- Evidence mounts indicating inadequacy of Code approach

 NRC and industry involved at every step

 - EPRI round robin test of depth sizing capability (1983) shows poor performance
 - No one can pass the new IGSCC qualification using basic Code techniques
 - PIRR analysis completed and published
 - PISC-2 shows poor performance for Code techniques on piping
 - Everyone recognizes inability to create an effective “cookbook” procedure

- 1989: ASME publishes Appendix VIII to Section XI

 - Defines and requires formal performance demonstration
History of improvement

1990s: Implementation of Appendix VIII

• US utilities formed the Performance Demonstration Initiative (PDI) to implement Appendix VIII
 – Built mockups and administrative structure

 NRC involvement at every step
 • Stainless piping, ferritic piping, RPV welds, nozzles, bolting
 – Adoption through 10CFR50 rulemaking
 • Slightly different from Appendix VIII as written
 – In building the program, PDI and NRC found and remedied difficulties that the Code authors hadn’t foreseen
History of improvement

1990s:
Implementation of SGMP Performance Demonstration

- US utilities developed protocol
 - Technique and personnel qualification
 - PWR SG Examination Guidelines
 - Appendix G and H
 - Performance criteria for tube integrity
 - Operational leakage
 - Structural
 - Accident induced leakage
 - Adoption through NEI 97-06
 - Industry steam generator program description
 - Adopted by all U.S. PWR utilities
History of improvement

2000s: Qualification today

- NRC and PDI meet twice each year to maintain alignment
- Appendix VIII and PDI have expanded
 - Weld overlays
 - Dissimilar metal welds
- All qualifications are comprehensive
 - Procedure, equipment, and personnel
 - Flaw detection, length sizing, and depth sizing
- Diverse program
 - Accommodates manual, semi-automated, automated
 - Accommodates conventional and phased array UT
 - Generic procedures available to all
 - Recognized by regulators in many nations
History of improvement

2000s: Qualification today

- NRC and SGMP meet twice each year to maintain alignment and technical issues
- NEI 97-06 steam generator program elements were adopted into U.S. PWR plant technical specifications
 - Became imposed by law
- Qualifications are comprehensive
 - Eddy Current
 - Bobbin, array, and rotating coil
 - Ultrasonics
 - Rotating element
- Diverse program
 - Sample selection
 - Inspection
 - Human performance
 - Personnel qualification
 - Site specific training and demonstration
 - Tube integrity
History of improvement

2000s: Qualification today

- SGMP imposed multiple requirements to address human factors
 - Two party analysis
 - Resolution process
 - Independent QDA (third party oversight role)
 - Automated analysis demonstration protocol
 - Creation of AAPDD for initial qualification of automated software
 - Analyst feedback loop
 - Individual analyst review of overcalls and missed indications
 - Structured analysis guidelines content
 - Site specific performance demonstration
 - Written and practical exam conducted prior to each inspection
 - Based upon site specific degradation and techniques
 - Data quality parameters
 - Probe manufacturing
 - Collected data
- Use of both pulled tube data and laboratory grown stress corrosion cracks for qualification of inspection techniques
History of improvement

Improvement of POD through the years

• Stainless steel pipe examination (mean POD, several studies)

Today: Performance-based qualification

1980s: Administrative qualification
History of improvement

Improvement of POD through the years

• Steam generator performance has improved due to:
 – Better probe technology
 – Improved human performance
 – Process controls
 – Steam generator replacement
 • Improved materials

Today: Performance-based qualification
Technology development has been a key to this improvement in NDE reliability

- 1980s
 - Specialized probes for IGSCC
- 1980s
 - Early automated systems
- 1990s
 - Improved software for data analysis
 - Two party analysis for SG tubing
 - Surface riding rotating coil probes for SG tubing
- 2000s
 - Advanced automated systems made possible by rapid advances in computing and microelectronics
 - Array probes for SG tubing
 - Computer auto analysis for SG tubing
 - Phased array technology
 - Mid-2000s: portable phased array systems
 - Today: every piping and dissimilar metal UT procedure qualification in 2008 will be phased array

Note that phased array technology improves coverage and productivity for some applications, but is not always more accurate than conventional UT
Looking ahead: Industry is working to develop or improve NDE capability in many areas

- NDE of dissimilar metal weld mitigations
- NDE of welds and overlays with poor surface conditions
- Cast stainless steel
- Detection of SCC at earlier, slower phases of growth
- Guided waves, for large-area components and for buried piping
- NDE for high-density polyethylene piping
- NDE for concrete

And supporting it all:

- Workforce expansion and improvement
 - More focused training
 - Making data presentation more intuitive
Agenda

• Effectiveness and reliability of ultrasonic examination
• Performance issues in the field
 – Review of recent NDE issues in the field
 – The errors are in human performance
• Guideline to improve performance
• Summary
Summary of the OE

<table>
<thead>
<tr>
<th>Outage</th>
<th>OE</th>
<th>Nature of issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susquehanna 1 2004</td>
<td>Surface condition</td>
<td>Performance (surface condition)</td>
</tr>
<tr>
<td>DC Cook 1 2005</td>
<td>Surface condition</td>
<td>Performance (surface condition)</td>
</tr>
<tr>
<td>Millstone 3 2005</td>
<td>Surface condition Confirmatory NDE</td>
<td>Performance (surface condition)</td>
</tr>
<tr>
<td>Farley 2007</td>
<td>Access limitation Manual confirmation</td>
<td>Performance (communication)</td>
</tr>
<tr>
<td>Pilgrim 2007</td>
<td>Care in data analysis</td>
<td>Performance (analyst bias)</td>
</tr>
<tr>
<td>Duane Arnold 2007</td>
<td>Surface condition Care in data analysis</td>
<td>Performance (surface condition)</td>
</tr>
<tr>
<td>Crystal River 2008</td>
<td>Surface condition</td>
<td>Performance (surface condition)</td>
</tr>
<tr>
<td>St Lucie 1 2008</td>
<td>Be prepared with augmented technique</td>
<td>Performance (contingency readiness)</td>
</tr>
</tbody>
</table>
Lesson: Procedure execution

- PDI qualified procedures produce high quality, reliable results when properly executed
 - Use the right probes and prepare the surface
 - Ensure surface contact meets procedural requirements
 - Document all areas of poor surface condition and all areas of scan limitation, and don’t take coverage credit there
 - Follow all the steps of data analysis before reaching a conclusion
Agenda

• Effectiveness and reliability of ultrasonic examination
• Performance issues in the field
• Guideline to improve performance
 – Background information and human factors discussion
 – Guidance for utilities
 – Guidance for vendors
 – Collaboration between utility and vendor
 – Implementation through NEI 03-08
• Summary
Guideline for implementation of ultrasonic examinations

• EPRI is preparing a guideline for the use of utilities in preparing for, and executing, ultrasonic examinations
 – Collects the lessons learned from field implementation issues
 – Addresses the key underlying factors
 • Human factors
 • Utility and vendor planning for the outage
 • Procedure compliance
 • Surface preparation
Guideline for implementation of ultrasonic examinations

• Schedule and focus
 – Publication Summer 2009
 – Guidance is applicable to any ultrasonic examination
 – For dissimilar metal welds, the guidance includes implementation categories according to NEI 03-08
 • Contains needed guidance for owner to develop and implement a surface condition assessment process and other good practices
 • Utilities commit to following the guidance
 • Deviations will be reported both to industry Issue Programs and to NRC
 • Compliance due within two outages after publication
Agenda

• Effectiveness and reliability of ultrasonic examination
• Performance issues in the field
• Guideline to improve performance
• Summary
Summary

• The effectiveness and reliability of examinations are high

• Recent issues in field implementation have resulted from human factors

• Tools are in place to improve the human element
Together...Shaping the Future of Electricity