A Multi-Parameter Probability of Detection (POD) Model for Flash Thermography

Christiane MAIERHOFER 1, Nick ROTHBART 2
1 BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
2 DLR Institut für Planetenforschung, Berlin, Germany

Contact e-mail: christiane.maierhofer@bam.de

Abstract

In most cases where a POD is calculated based on continuous data obtained by active thermography, the signal-to-noise ratio (SNR) of the signal, the difference of the defect signal to the background or the absolute signal is analysed as a function of the aspect ratio (ratio of the size of a defect to its overage), although a distinct linear relationship on a linear or logarithmic scale could not be satisfactorily shown and is also not expected. Therefore, a multi-parameter probability of detection (POD) model was developed, where an a versus a continuous signal analysis was based on the linear relationship between the SNR and a multi-parameter a. This POD model is based on data which were recorded within a flash thermography round robin test with nine participants. Metal test specimens with flat bottom holes (FBHs) were analysed by calculating the SNR of the defect signatures in the thermograms as well as in the phase images as a function of defect parameters. The linear relationship of the experimental data to the multi-parameter a was verified by comparison to data obtained from an analytical model that is considering lateral thermal heat diffusion as well as to data obtained by numerical simulation. The resulting POD curves for the thermograms and phase images give an estimation for the detectability of the FBHs with known geometry in steel using different equipment and obtained by different participants. By comparing the SNRs of FBHs with similar geometries, this POD model was transferred to aluminium and copper as well.
A MULTI-PARAMETER PROBABILITY OF DETECTION (POD) MODEL FOR FLASH THERMOGRAPHY

C. Maierhofer, Bundesanstalt für Materialforschung und –prüfung (BAM), Berlin; N. Rothbart, German Aerospace Center (DLR), Berlin, Germany

Aim and implementation of the POD of flash thermography

- Performance of a round robin test for the approval of a draft national standard on flash thermography
- Comparability of data obtained with different equipment and analysed by different participants
- Investigations at different materials: steel, aluminium, copper. The same set of test specimens was sent to each participant one after the other.
- Test instructions and test protocols were predefined
- Data were collected and analysed at BAM
- A multiparameter POD model was developed and applied to the data sets of each partner
Participants and used equipment

- **No. of participants:** 9
- **No. of test specimens:** 3 (16)
- **Used equipment:**
 - Flash lamps: 3 to 24 kJ
 - IR-cameras: 1 x microbol., 8 x InSb
 - Measurement conf.: reflection, transmission
 - Frame rate: 50 to 330 Hz
 - Data analysis: thermograms, phase images, no. of detected defects, SNR, size
- **Preparation of samples:**
 - Graphite spray for metals

Test specimens with flat bottom holes (FBHs)
Diameters: 8, 16 and 32 mm; depths: 2 to 6 mm

<table>
<thead>
<tr>
<th>Material</th>
<th>Diffusivity α in 10^{-5} m2/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel 1.4301 X5CrNi18-10</td>
<td>0.37 ± 0.02</td>
</tr>
<tr>
<td>aluminium 3.3206 AlMgSi0.5</td>
<td>5.0 ± 0.2</td>
</tr>
<tr>
<td>copper CW004A</td>
<td>9.8 ± 0.4</td>
</tr>
</tbody>
</table>

Determined experimentally from transmission measurements

Thickness of plates: 7.5 mm
Numbers give the remaining wall thicknesses
Data analysis for the determination of detectability of FBHs

- Subtraction of thermogram recorded before the flash (zero image) from the whole sequence
- Application of Pulse Phase Thermography (PPT) to the sequence starting with the first image directly after the flash
- Determination of detectability of FBHs in selected thermograms and selected phase images by subjective decision of the test personnel

Detectability* of FBHs with larger diameters

*in thermograms or phase images

- Deeper holes could be detected less often due to limited penetration depth
- Smaller diameters could be detected less often due to lateral diffusivity
Number of detected FBHs for each participant and each material in the phase images

By some of the participants, less FBHs could be detected especially in Cu.

Determination of signal-to-noise ratio

\[
SNR_T = \frac{\Delta(\Delta T)}{\sigma_T} \quad SNR_\phi = \frac{\Delta \phi}{\sigma_\phi}
\]

\(\Delta(\Delta T)\) and \(\Delta \phi\) are determined from line scans across the defects

\(\sigma\) is the standard deviation of e.g. 100 pixels at three positions in sound areas

\[
\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
SNR in thermograms and phase images, large steel test specimen, as a function of RWT

- SNR was averaged over all participants
- SNR decreases with increasing remaining wall thickness

SNR thermograms

- SNR decreases with decreasing diameter
- In all cases, the SNR is higher in the phase images

SNR phase images

SNR in thermograms and phase images, large steel test specimen, as a function of aspect ratio

- For similar aspect ratios, FBHs with a smaller diameter have a higher SNR

SNR thermograms

- There is nearly a linear relationship between SNR and aspect ratio, but only for a fixed diameter

SNR phase images
Analytical model for the consideration of 3D heat diffusion around defects

\[\Delta T(0,t) = \frac{2q_0}{\sqrt{\pi \rho c \lambda t}} \sum_{n=1}^{\infty} R^n e^{-\alpha_n^2 t} \]

Introduction of a defect parameter

For POD analysis, a defect parameter is required which depends linearly on the measured signal:

\[\hat{a}(a) = B_0 + B_1 a + \delta \]

- No linear dependence of SNR on diameter D, defect depth d or aspect ration D/d
- Introduction of empirical defect parameters:

 \[a_r = \left(\frac{D}{d} \right)^{0.7} \left(\frac{d}{d_i} \right)^{1.9} \] for thermo-grams

 \[a_\phi = \left(\frac{D}{d} \right)^{0.7} \left(\frac{d}{d_i} \right)^{1.6} \] for phase images

\[d_i : \text{thickness of the plate} \]
Linearization with the defect parameter
Mean values of all participants

For the linearization of the data of individual participants, the standard deviation is larger. Rel. standard deviation of thermograms and phase images is similar.
POD as a function of defect parameter

Data of participant E

A direct comparison of both graphs is not possible as both defect parameters have a different meaning. How is an interpretation possible?

POD as a function of defect diameter

Data of participant E

Crossed diameters could not be detected

Within the phase images, the FBHs could be detected with higher reliability.
POD as a function of defect depth
Data of participant E

POD thermograms

POD as a function of diameter
Comparison of POD of different participants

The lowest POD values in the thermograms were obtained by participants E and H, the lowest POD values in the phase images by participants H and I.
POD as a function of depth
Comparison of POD of different participants

- Clear influence of procedure used for the calculation of phase images
- Standardization is required

19

Summary and conclusion

Detectability and SNR of FBHs
- Both is higher in steel, less in Cu due to higher diffusivity
- SNR is higher in the phase images
- SNR decreases with d and increases with D, no general unique dependence on aspect ratio
- Influence of equipment, data analysis and personnel staff is unincisive, up to three groups of participants

POD analysis
- σ versus a analysis for the POD requires the introduction of a defect parameter (multi parameter appr.) for the linearization of SNR
- For interpretation, POD curves can be calculated as a function of depth or diameter separately
- If the threshold is set to the standard deviation of the linear fit, the POD curves are reflecting very well the experiments

20
Outlook

- More data are required for the validation of the multi-parameter
- Specification of algorithms and boundary conditions used for Pulse Phase Thermography (frame rate, start image, number of images, FFT algorithm, windowing etc)
- Comparison of different data analysis procedures
- Draft national standard on flash thermography is available: *E DIN 54184:2017-01 Non-destructive testing – Pulse thermography using optical excitation*

Acknowledgements

The project was funded within the program Innovations with Norms and Standards (INS 1255) by the German Federal Ministry of Economics and Energy. Within DIN e.V., the Standards Committee Materials Testing (NMP) was responsible for the project.

We gratefully acknowledge the help of all participants!