Presentation plan

- EC/ECA testing and equipments
- Aerospace applications
- Other applications

Nortec N600

Omniscan ECA
Historique théorie

\[e = \frac{|\Delta \Phi|}{|\Delta t|} \quad \text{or} \quad \Phi = L i \quad \text{donc} \quad |\Delta \Phi| = L |\Delta i| \]

\[J_x = J_0 e^{-\left(x\sqrt{\mu\sigma_f}\right)} \sin\left(2\pi ft - x\sqrt{\mu\sigma_f}\right) \]

\[\theta = 57 \frac{x}{\delta} \quad J = 100 \cdot \exp\left(-\frac{x}{\delta}\right) \quad \delta = 50 \sqrt{\frac{\rho}{f\mu_r}} \]

\[U^2 = R^2 I^2 + L^2 \omega^2 I^2 = (R^2 + L^2 \omega^2)I^2 \]

D'où \[U = I \sqrt{R^2 + L^2 \omega^2} \]

Donc \[Z = U / I = \sqrt{R^2 + L^2 \omega^2} \]
History

Yesterday

Today

Tomorrow

This document and the information contained are OLYMPUS SSD property and shall not be copied or disclosed to any third party without OLYMPUS SSD prior written authorization
EC Testing
Equipment
OMNI-P-ECA4-32

- Conventional and Array ECT
- 4 input channel
- 32 channels
- 64 channels with external multiplexer
- 1-Analog output
- Frequency range from 20Hz to 6MHz
- Dual Frequency operation ECA
- 8 Frequency operation EC
- 2-Encoder input
- 3-Alarms output
ECA probes application

- Aircraft Corrosion
- Tubes inspection
- Gaz Turbine
- Pipe
- Rails
- Dovetail
- Train axis
- Doubler edge
- Weld
- FSW
- Blade
AEROSPACE INDUSTRY: VM OLYMPUS SOLUTION

FAA policy on rotating parts

Historic: accident, Pensacola, Florida

- Engine failure on take-off roll
- Pilot aborted take-off
- Stage 1 Fan Disk separated; impacted cabin

Represented second major premature failure of an engine disk in service due to unanticipated and undetected damage.

Spawned FAA Enhanced In-Service Inspection and Robust Manufacturing Initiatives.

Eddy current inspection on disk.
Fan Disk ECA INSPECTION

- MAKING THE KIT FUNCTIONAL

This document and the information contained are OLYMPUS SSD property and shall not be copied or disclosed to any third party without OLYMPUS SSD prior written authorization.
Making the Kit Functional, Kit conception

- Define Technical Specifications
- Quotation through NDT integrator Company
- Design Review Meetings
- Evaluation of Proto 1
- Industrialization
 - Performance validation
 - Documentation validation
 - Application qualification
Project Management, Human factor

- **Cost**
 - Investment Cost nearly 10 Times Cheaper
 - Operation Cost: 90 Minutes from Start to Report

- **Operator Stand Point**
 - New Skills, New technology
 - Direct False Call Analysis

- **The Key Factors**
 - Encoded Acquisition
 - Guided Scanner
CFM56-7 Fan Blade ECA inspection

Faulty engine blade on Southwest Airlines jet broke free and smashed a HOLE in the hull of the plane moments before it was forced to make an emergency landing

- Faulty engine blade on Southwest Airlines jet 'showed signs of fatigue'
- A Southwest jet was forced to make an emergency landing on August 27, 2016
- It had been flying from New Orleans, Louisiana, to Orlando, Florida
- National Transportation Safety Board is investigating the mid-air incident

- Represented second major premature failure of a engine blade in service due to unanticipated and undetected damage
CFM56-7 Fan Blade ECA inspection
CFM56-7 Fan Blade ECA inspection

Critical area
Federal Agencies Recommendations

- NTSB Report recommended:
 - Changes in inspection methods, shop practices
 - Fracture mechanics based on damage tolerance

- Spawned FAA Enhanced In-Service Inspection and Robust Manufacturing Initiatives

- Eddy current inspection on Fan blade
CFM56-7 Fan Blade ECA inspection

First Step
Given the severity of the problem, the first step was the development of a very simple ECA inspection means but quickly available...

Solution:
Omniscan ECA + ECA flexible probe + 3D printer probe holder

For this step we have delivered:
- 6 omniscan ECA
- 24 ECA flex probe
- 12 ECA cable
ECA - Flexible Probe

- Two mode

Absolut
Need a encoder

Reflection
More sensitive to small defects
CFM56-7 / 5 Fan Blade ECA inspections

Second Step
The second step is the development of an industrial ECA inspection Kit for two engines CFM56-7 and CFM56-5.

Solution included for each version:
- Omniscan ECA
- 2 x ECA flexible probe
- Mechanical system
- Iplex probe holder
- Blade sample
- Case Pelicase
- Setup on USB key
- Certificate

This document and the information contained are OLYMPUS SSD property and shall not be copied or disclosed to any third party without OLYMPUS SSD prior written authorization.
Project Management, the OEM Responsibilities

- **OLYMPUS JOB**
 - Designs the part and the global inspection system
 - Study EAC solution and tool
 - Create a setup and tests the tool on customer samples
 - Develops Inspection Application to service the products
 - Validation steps
 - Assisting the engine manufacturer to demonstrates to the Aviation Authorities the ability to guaranty the certified life span

- **CFMI JOB**
 - The Engine Manual
 - OEM issues the Engine Manual with all Inspection Requirements
 - The Manual Specifies an Inspection Application for all Areas
 - The Standard Practice Manual
 - The OEM issues a Manual of the Suitable Method for the Required Inspection
 - Customer training
Boeing 737 Skin crack detection at doubler edge

- The inspection is done from the outside and crack as small as 0.240” long by 0.010” deep located at the edge of the doubler need to be detected.

- Benefits:
 - Simple manual inspection
 - C-Scan allows easy location
 - of the doubler edge for fast
 - and simple detection of the initiating cracks
 - Better reliability
 - Better reproducibility
 - Time saving:
 - Normal time: 200 hours
 - With ECA: 48 hour

Inside of the skin
Boeing 737 Skin crack detection at doubler edge

- The user can see very well the doubler edge represented by the light to dark green color transition.
- Fastener will show up in light green.
- Defect above the rejection level are in red like shown in this picture
Engine disk dovetail slot Inspection

- ECA probe
- 32 elements
ECA HF Inspection method
Inspection in the maintenance shop

Disk CHP D1

Tooling

This document and the information contained are OLYMPUS SSD property and shall not be copied or disclosed to any third party without OLYMPUS SSD prior written authorization
Screw inspection
Weld Inspection

- Pipe
- Windtower
- Rail
MagnaFORM on Weld

Flexible Probe

Good Contact

Increased Lift-Off

This document and the information contained are OLMPUS SSD property and shall not be copied or disclosed to any third party without OLMPUS SSD prior written authorization.
Flexible Sensor Array

16 + 16 Sensors (two types)

Active Circuitry

Eddy Current Sensors: Multi-Layer PCB Etched Coils

This document and the information contained are OLYMPUS SSD property and shall not be copied or disclosed to any third party without OLYMPUS SSD prior written authorization.
Weld Close-Up

- Lift-Off
- Raw Crack Signal
- Compensated Crack Signal
Notches identification on the C-Scan view

length: 6mm, depth: 1.2mm, width: 0.2mm
Travel quietly with Olympus SSD