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Abstract 

It is offered to employ the neural network (NN) technology in the software of on-board aircraft engines automatic diagnostic 
system. But first it was necessary to solve the problem related to teaching NN the ability to adequately and certainly evaluate critical 
shift of an aeroengine technical condition in flight, including engine monitoring system, e.g. in case of one of data channel fault. 

Current research recommends to move from trend analysis of gasdynamics parameters measured on the engine during flight to 
numerical analysis of engines air-gas path defects criteria using neural networks trained by using diagnostic matrix (DM) specifically 
worked out for this particular engine model with the purpose of deeper diagnostics of fitted on Fokker-50 PW-125B turboprop engine 
two-shaft gasgenerator. Based on the research results there is recommendation to introduce in the operations the set of neural networks, 
trained with abbreviated DM, with defined number of input data which will allow to perform more reliable engine diagnostics during 
flight in real time mode. Also it is noted that for two-shaft gasgenerator 4 parameters are the minimum parameters number below which 
the diagnostics become unreliable. 
Keywords: diagnostics, neural network, failures. 

 
Introduction 

The qualitative difference of the fifth generation 
aircraft engine diagnostics system is the using of the 
onboard solid-space removable magnetic storage devices 
(or laser compact-discs) that allows to increase the volume 
of the flight information to register rapidly, as well as to 
process this information with the aid of expert systems 
with artificial intelligence elements such as artificial neural 
networks [1, 2, 3]. The important requirement for such 
systems is that for the raising the safety of the flights 
onboard information system for the estimation of the 
technical condition of the engine must contain not only 
facilities for the initial information processing during the 
flight, but also the local defect recognition system [4]. 
Primarily it is concerning to such failures and malfunctions 
that can threaten the continuation of current flight. 
However the realization of the usual approach to potential 
engine defective conditions in the onboard computer is 
difficult because of the limitations to the volume of 
information that can be stored and processed onboard. 
That’s why, for example, in the onboard engine control 
system PS-90A (used in Il-96-300 and Tu-204) in the 
block of operational documentation (BOD) to the CPU 
tape not the values of parameters themselves, but only the 
signals signifying their value deviation are recorded [5]. 
The indications of BOD are checked after every flight and 
if the tape is clear, then engine had been working without 
deviations, else according measures must be taken (not in 
the flight, but on the ground). For the correct decision 
taking during the flight crew receives the collection of the 
codes of external failures displayings. Using it the situation 
with the defect appearing or malfunction during the flight 
can be analyzed. 

For the automation of the decision taking during the 
flight in such situations another method for initial 
information about engine working processing using the 
onboard computer is proposed. It is the apparatus of 
artificial neural networks, which is more and more widely 

used in the different humanity activities tasks [3]. 
However, for its effective usage the problem of neural 
network’s training for adequate and reliable estimation of 
the critical change of the engine technical condition 
including the onboard control system must be considered. 

Problems of using the diagnostic matrices for the 
aircraft engine diagnostics  

The using of diagnostic matrices [6] is one of the most 
promising aircraft engine diagnostics method. In current 
investigations the switching from qualitative estimation of 
thermogas parameters’ (measured on the engines during 
the flight) deviations to quantitative estimation of the 
flowpath’s defects using the diagnostic matrix (DM). It is 
offered for the increasing the depth of the diagnostics for 
the dual rotor turboprop engine’s PW125B of the Fokker-
50 gas generator, which is exploited in the “Riga” airport. 
Unfortunately, it is impossible to use DM during the flight 
because of the limited measurable parameters’ count (nLP, 
nHP, Т*

LPT и GF).  For the successful diagnostic of the gas 
generator the complete control of all its nodes (each 
compressor and each turbine) is required. The existing 
measurable parameters’ count does not allow to carry out 
the qualitative diagnostic, because the change of the small 
parameters’ count does not point to possible processes 
taking place in the engine’s flowpath. From the 
mathematical model analysis it can be seen that there is a 
single connection between the compressor’s and turbine’s 
parameters, but in the case of insufficient measurable 
parameters’ count it can not be always discovered – the 
linear equation system becomes unsolvable.  

To make the using of the DM in the ground conditions 
the placement of additional sensors of pressure and 
temperature in the flowpath is needed. The required count 
of them is theoretically founded basing on the count of 
variables needed for the solving the equation system 
containing 16 equations of the modified LMM (linear 
mathematical model) of the engine [6]. The solution of the 
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system of the linearized equations describing the gas flow 
in the flowpath of the turboprop engine (physical 
mathematical model) is obtained for the case of the 
permanent capacity and turning moment with the constant 
propeller’s turbine rotor rotation frequency (δNe = δMT = 
δnТP = 0), that’s why these parameters are not considered. 
Using the LMM of the engine the diagnostic (localizing) 
matrix was formed. It allows to calculate the deviations of 
some calculable parameters by the determination of the 
measurable thermogas parameters’ relative deviations [7]. 
Some of these parameters, in particular, additional 
compressor’s characteristics shifts are the criteria 
(diagnostic indications) of the defects’ appearance in the 
flowpath of these gas generator modules. At the same time 
the count of the measurable parameters must be equal to 
the criteria count in the DM. The rest of the determined 
using DM parameters carry information about the changing 
of engine’s characteristics on account of it’s mode of work 
change.  

It is necessary to note that the main task for the 
automatic regulation of concerned engine is to keep 
constant capacity in the present flight conditions. In such 
situation gas generator’s parameters can oscillate in some 
defined limits. In the case of the defect development 
automatics of one of the nodes on the defined mode has to 
compensate the loss of capacity in only possible way by 
increasing the feed of fuel GF. In return, it will increase the 
temperature of the gas in front of turbine Т*

G and 
accordingly rise the work of the turbine which has no 
defect. Similar situation appears in the case of the 
compressor’s defect. In the case of airflow or efficiency 
factor reduction in consequence of pollution or mechanical 
damages the increasing of required horsepower takes 
place. It must be compensated by the increasing of the 
turbine’s work, which, in return, is accomplished by the 
gas temperature raising and is leading to Т*

LPT и GF 
increase and nLP decrease. The determination of the 
allowable parameter’s deviations limits is the separate very 
important task in the diagnostics based on the defect 
development statistics gathering, which will guarantee the 
goal of the prediction of the engine’s future secure 
exploitation.  

Resting upon this analysis the following additional 
measured parameters were chosen: π*

LPC - compression 
ratio of low pressure compressor; π*

HPC  - compression 
ratio of high pressure compressor; T*

LPC  - temperature 
behind the low pressure compressor; T*

HPC  - temperature 
behind the high pressure compressor; π*

LPT - expansion 
ratio of low pressure  turbine. 

During the exploitation process the direct problem 
must be solved. It consists in the localizing the node’s 
defect directly by the measured parameters values changes. 
At the same time for each defect the typical combination of 
the measurable parameters’ deviations exists. For the 
defect localizing using the DM it is necessary to use the 
diagnostic equations that consist of measurable 
parameters’ deviations multiplied by according coefficients 
of influence (in the DM rows). For example the change of 
the consumption characteristic of the LPC is defining as 
follows: 
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where ai – coefficient of influence that according 
measurable parameter has on required parameter (criterion 
of the defect).  

Real defects of the turbo-compressor appear as the 
specific set of measurable parameters’ deviations peculiar 
to the according defect. But even an experienced engineer 
(expert) can not estimate all the variety of these 
parameters’ deviations’ combinations. DM give an 
opportunity to localize the defect in the flowpath by 
defining the quotient fault criteria (for the compressor it is 
quotient change of the efficiency factor δη *

C and air 

consumption characteristic’s δG A shift; for the turbine – 
changes of the efficiency factor δηT

* and nozzle exit 
sections’ area δFN). Quantitative values of the criteria pair 
can be presented as the defect’s vector field and to analyze 
these defects’ development trends from flight to flight, but 
if allowance borders are taken into consideration it is 
possible to predict the time of these defects’ dangerous 
development and of the engine faults. Of course, arrays of 
the measurable parameters’ deviations are the average 
statistical sets received after the processing of the recorded 
and gathered flight information as well as after binding to 
some engine work mode (rated, cruise, etc.). Unfortunately 
DM loose their ability to localize the defect during the 
flight in the case of even one sensor (or data carrier) 
failure.  

Method of artificial neural networks’ training in 
the task of aircraft engine diagnostics 

For the diagnostics task the method of defect’s 
localization relied on non-linear artificial neural networks 
(NN) is proposed. The main problems of this method relate 
to the neural network training process [8].  

In this paper the information received after LMM 
transformations to the table of the influence coefficients 
(that allows to specify the defect node and to receive the 
set of the measurable parameters’ deviations) and DM 
(using it the criteria characteristics of the defect 
demonstration during the exploitation process such as 
length and direction of the vector characterizing the 
flowpath defect can be calculated) are used in the training 
set forming process. Approach of using theoretically 
formed DM for the developing the software for the 
diagnostic systems is especially significant in the case of 
new engines because statistics of the flowpath defects’ 
demonstrations has not yet been received.  

For the task solution the two-layered perceptrons are 
considered (Figure 1). This is the most developed and 
popular topology of the artificial neural network [9].  

It is necessary to consider that the main advantage of 
multi-layered networks is their non-linearity that can be 
accomplished by the usage of the non-linear activation 
function. It can be shown that in such case the two-layered 
perceptron  can  represent  any   function  with  the   finite  

 25



ISSN 1392-2114 ULTRAGARSAS, Nr.3(60). 2006. 

points’ of discontinuities count if the size of hidden layer is 
sufficient. The most commonly used activation function is 
sigmoidal curve because of its simple derivative: 

 ( ) xe
xf λ−+
=

1
1

, (2) 

where λ is the shape parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Two-layered perceptron scheme 

As the artificial neural network training algorithm the 
back-propagation is offered. It consists of iterative 
corrections of output and hidden layers’ weights:  
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where outputi, hiddeni – the outputs of i-th output or 
hidden neuron accordingly before applying the sigmoidal 
activation function, α – learning rate. 

The given algorithm is the sort of gradient descent on 
the error surface. It means that it doesn’t guarantee the 
discovering of the global minimum of the error function 
(which depends on weights) or it’s convergence in the 
acceptable terms. Nevertheless many researchers report 
about successful back-propagation uses in the solution of 
the number of applied tasks. The weight correction occurs 
for each observation and in the most cases tens and 
hundreds of the whole training set presentations is needed 
for the acceptable results’ reaching. 

The stages of the two-layered perpceptrons training are 
the follows: 

1. Forming of the training and verification sets. 
2. The defining of the activation function for the 

hidden and output neurons. 
3. The defining of the hidden neuron count. 
4. Consecutive applying of the back-propagation 

algorithm during some amount of time or until the 
error of the network becomes permissible (after 
this stage weights never become changed). 

5. Network’s performance test on the verification 
set. 

The high efficiency of the network on the training set 
doesn’t guarantee that network has correctly understood 
the dependence between input and output data. If the errors 
on the training and verification sets differ significantly, 
then the network is working incorrectly. In such case the 
repeated possibly longer training increasing of the training 
set size or the change of the network parameters defined on 
second and third stages is needed. Such situation means 
that network has overlearned. 
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Method of artificial neural networks’ using in the 
task of qualitative aircraft engine diagnostics 

After the training process has finished neural network 
can be used for the real tasks solving and the weights are 
not changed anymore. According set of variables is fed to 
the network and almost instantly the calculated output 
variables’ values appear at output layer neurons. Using the 
random number generator 250 cases of each node defects 
(as the field of possible defects’ criteria) were added to 
training and verification sets. It was supposed that single 
defects are the most probable. x: input vector 

Lower there are the results of the research of the errors 
appearing during NN usage process while some sensor 
indication is absent. In such cases zero value was fed to 
according input neuron. According errors’ values are given 
in the Table 1.  

Table 1. Errors of the nine-input NN for the solution of the qualitative 
diagnostics task in the case of one input variable absence 

Absent variable Network error, % 

nHP 3.33 

nLP 1.06 

Т*
LPT 0.7 

GF 2.83 

pLPC
* 1.18 

pHPC
* 0.53 

T HPC
* 2.91 

T LPC
 * 1.98 

РLPT
 * 0.83 

 
As was said before additional five sensors can be 

installed only in the ground conditions because the 
installation and need to process and store additional 
information in the onboard system is difficult. During the 
flight there is only information from four sensors. Because 
of it the possibility of NN usage while only four sensors 
installed on board was investigated. Toward this end the 
training of the neural network was made on only four input 
variables corresponding the information from sensors 
installed in the engine by the developer firm, but the 
coefficients from full DM were used for calculations.  

The network behavior in the case of one information 
carrier failure were also investigated. It was done in the 
same manner like in the example above (see Table 2). 

 26



ISSN 1392-2114 ULTRAGARSAS, Nr.3(60). 2006. 

Table 2. Errors of the four-input NN for the solution of the qualitative 
diagnostics task in the case of one input variable absence. 

Absent variable Network error, % 

nHP 4.96 

nLP 10.6 

Т*
LPT 5.93 

GF 3.83 

As can be seen from the received results the efficiency 
of the single four-input network is evidently insufficient in 
the case of one carrier failure. Here it is especially vividly 
shown that for the each defect there is the definite 
combination of measurable parameters’ deviations and 
decreasing their count increases the weight for each 
measurable quantity accordingly to it’s coefficient of 
influence (the ponderability of measured parameters’ 
errors also grow up). 

Method of artificial neural networks using in the 
task of quantitative aircraft engine diagnostics 

Two different options are available while realizing the 
NN for the quantitative diagnostics task solution: 

1. NN has as many input neurons as the count of set up 
sensors is. The count of outputs is defined by the count of 
the engine’s node. Real number characterizing the 
corresponding node defect’s degree appears at each of the 
outputs. 

2. There is a set of NNs - single network for each 
diagnosable node. The count of input neurons is the same 
to the previous option, but the output is only one and it 
defines the degree of the corresponding node defect. 

Because the training of the universal network 
described in the first option is connected with the serious 
difficulties, we will use the second. Let us use the dataset 
received for the nine-input network, but the length of the 
defect vector in the field of possible defects’ criteria will 
be used as output (not 0 or 1 as in the previous section). 
Results of this experiment are given in the Table 3. 
Table 3. Errors of the NNs for the solution of the quantitative 
diagnostics task. 

NN 
specialization 

Input 
count 

Abs. 
error 
mean 

Error 
standard 
deviation 

Correlation of 
NN output 
and error 
vector length 

LP compressor 
defect 4 0,03 0,04 0,99979 

LP compressor 
defect 8 0,03 0,04 0,99981 

HP compressor 
defect 4 0,03 0,04 0,99976 

HP compressor 
defect 8 0,03 0,04 0,99974 

LP turbine defect 4 0,04 0,05 0,99965 
LP turbine defect 8 0,03 0,04 0,99983 
HP turbine defect 4 0,02 0,03 0,99986 
HP turbine defect 8 0,02 0,03 0,99990 

Thus the air engine’s quantitative diagnostics process 
consists of two stages: 

1. Realization of the qualitative diagnostics using 
NNs received in previous section.  

2. The using of according network defined by the 
data analysis in the previous stage for the carrying 
out the quantitative diagnostics. 

Conclusion 

The investigations carried out confirm that the usage 
of NN offer rich opportunities for the diagnostics of the 
air-engines on board in the real time mode. Starting from 
the results of the investigation it can be recommended to 
apply the two stage process: the qualitative diagnostics and 
after it the quantitative diagnostics. Such approach will 
allow to carry out the process of the engine diagnostics 
during the flight reliably. Though it should be mentioned 
that in the case of two rotor gas generator four meterings 
are the minimum by decreasing which the diagnostics will 
lose the credibility. Therefore in the new air-engine 
(especially the fifth generation and higher) development it 
is necessary to consider their scheme and in advance to 
supply the engine with scientifically founded control 
complexes and diagnostics systems. 
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Aviacinių variklių bortinė diagnostika neuroniniais tinklais  

Reziumė 

Aviacijos varikliams diagnozuoti naudojamos neuroninės sistemos. 
Remiantis lėktuvo Fokker-50 tyrimais pateikiamos gedimų nustatymo 
variklio oro dujų tekėjimo vietose rekomendacijos. 
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