Increasing the accuracy of measurement for the small-shift, two-channel ultrasonic echolocation-based distance meter

A. Petrauskas

Prof. K. Baršauskas Ultrasound Institute
Kaunas University of Technology
Studentų st. 50, LT-51368 Kaunas, Lithuania
E-mail: Algimantas.Petrauskas@ktu.lt

Abstract

Non-contact film thickness meters are most useful to measure physical-mechanical properties of thin polymer-based films. When polymerizing PVC resin at high temperature, the environment becomes very turbulent and is a source for measurement errors. This article explores the measurement errors, which arise when using an echolocation-based distance meter in such environments. Sources of measurement errors are identified and solutions for elimination of these errors are presented. This article provides the solution to avoid the effects of the turbulent environment on measurement accuracy. Additionally, design guidelines for acoustic distance measurement equipment are presented, along with schematic block diagrams. The equipment is designed for maximum measurement accuracy. When acoustic measurements have to be done in a turbulent environment, a version of the electro-acoustic part of the distance meter is presented. It eliminates the negative effects of the turbulent environment on measurement results, therefore very accurate acoustic measurements of small distances become possible.

Keywords: PVC film, polymerization, thickness of film, electro-acoustic distance meter, echolocation, ultrasound, measurement errors, measurement accuracy, piezoelectric transducer, turbulent environment

Introduction

In practice, most common PVC-based materials are produced by polymerizing PVC resin at high temperatures (around 220 °C). Polymerized films are mechanically joined with various reinforcing materials. The thickness and structure of polymerized films depend on various additives placed in the PVC resin before polymerization. For practical applications, it is important to know the variations in thickness and porosity of the film during and after the polymerization process.

When measuring the thickness and porosity of such films, non-contact thickness (distance) meters are most useful. In the range of non-contact meters, ultrasonic echolocation-based meters have their niche [1, 2].

Overview of measurement error sources

Acoustic (ultrasonic) echolocation-based meters are widely applied for various distance measurements [1-11]. The operating principle of such meters is based on measuring the duration of measurement signal’s propagation to the object and back. Many of such meters use pulse – echo signals.

When measuring in a broad temperature range, measurement errors, which occur due to the dependence of acoustic measurement signal’s velocity on temperature [12], need to be determined and compensated.

The error of measured distance (thickness) in this case is determined by changes of ultrasound velocity due to variations in the temperature of the environment (−0.17 % for a change of one degree in temperature). This measurement error can be compensated by applying parametric thermo-compensation [13], which reduces this measurement error down to 0.01 % for a change of one degree in temperature.

The measurement error also depends on the design of the electro-acoustic measurement channel.

When measuring the thickness of PVC films during the polymerization process, turbulent air currents develop in the temperature range of 10… 230 °C. The currents rise towards the measurement sensors and change the path of acoustic measurement signals. Simultaneously, variations occur in the velocity of measurement signals. Additionally, due to temperature gradients in the turbulent environment, acoustic wave refraction and reflection take place. Because of this, the amplitude of the measurement signal varies and, at some moments of the measurement process, cannot even be registered in the transducer.

Chemical composition of air is changing in the process of PVC polymerization. This also has a negative effect on the accuracy of measurements.

The accuracy of measurements also depends on the design of an electro-acoustic system. The measurement error mostly depends on the thermal expansion of the constructive elements and on parasitic signal propagation through constructive elements from a transmitter directly to a receiver, instead of the signal’s required path through air to the surface of measurement object and back.

To avoid the influence of the turbulent environment on measurement results, we suggest to separate the environment of the measurement signal’s path from the turbulent environment around the object.

When analyzing the influence of a particular echolocation-based meter on the measurement accuracy, choice of a measurement system (layout) is important. The measurement system can be with two electro-acoustic sensors (Fig. 1), one of which transmits and the other receives the measurement signals.

The other option is to use a single transducer that transmits and receives measurement signals. When the
distance \( L \) (Fig. 1) changes in the process of measurement, the distance to the object \( l \) is calculated by the measurement system using expression [13]:

\[
l = \sqrt{L^2 - \left( \frac{A}{2} \right)^2}.
\]

Using Eq. 1, the actual distance \( l \) is calculated using the measured distance \( L \). One can see from Eq. 1 that by decreasing the distance between transducers \( A \), the systematic measurement error also decreases. For example, if \( A = 10 \text{ mm} \), and the measured distance changes by 1 mm, the measurement error is 0.11 mm. Therefore, the distance \( A \) should be as minimal as possible.

In a measurement system option with one transducer, the distance \( A \) is zero and such measurement error is no longer present.

Other source of measurement errors is from the chosen electronic measurement structure in which the measured propagation time errors of the measurement signal occur due to the insufficient signal-to-noise ratio [1, 14-17]. Additionally, the measurement errors occur due to various electronic signal delays in the circuits [18-26].

### Design guidelines for measurement equipment

The measurement signals obtained from separate measurement channels, can be processed in the measurement device simultaneously or consecutively [13]. To decrease the processing time of measurement signals, simultaneous processing of information is preferred.

To decrease the measured propagation time errors of the measurement signal, measurements in all measurement channels need to be made simultaneously. The simplest block diagram of such measurement device is presented in Fig. 2 [13].

![Fig.2. Block diagram of measurement device](image)

In a measurement system option with one transducer, the distance \( A \) is zero and such measurement error is no longer present.

Other source of measurement errors is from the chosen electronic measurement structure in which the measured propagation time errors of the measurement signal occur due to the insufficient signal-to-noise ratio [1, 14-17]. Additionally, the measurement errors occur due to various electronic signal delays in the circuits [18-26].
The second measurement channel of the meter is used as a calibrated channel for determining the exact velocity of sound. The sensor frequency is in the 0.8... 2 MHz range. The transmitters are excited by one half-period electric pulse. The detection circuit for determining zero crossing is used in the receiving channel of measurement signals. This way the obtained measurement accuracy is the same as of the phase method [28]. The obtained time interval, proportional to the measured distance, is filled by 100 MHz marks. These marks are counted by a counter and processed by the processor. The processor performs the primary processing of the measurement information (eliminating the changes of ultrasound velocity, calculating average results, etc.).

The meter may be connected to the PC through the interface RS485. The meter also has and LCD panel showing two rows of four-figure results. The absolute measurement error is 0.02 mm. The error arises because of the delays and noises in the electronic circuits and due to the instability of the threshold level of the electronic comparator [28]. Therefore, the measured signal delay time fluctuates. This instability was reduced by averaging the results of measurement. The errors arising due to changes in temperature, composition, humidity and air pressure in the acoustic measurement channel were eliminated by using additional calibrated length channel for determination of the exact sound velocity. The number of measurement channels can be increased as needed.

A possible version of the electro-acoustic part of the thickness meter is schematically presented in Fig. 4 [29].

The environment of the measurement signal’s path is separated from the turbulent environment around the object. This makes it possible to avoid the influence of turbulent air streams and changes in a chemical gas composition on the measurement results.

The measurement equipment is presented in Fig. 4 operates as follows:

By using the handle (1), the upper measurement chamber is raised and secured using the spring retainer (2). This enables the sample (3) for evaluation to be swapped. By using the lever (4), measurement tables (5) are raised with respect to the nest (6). This enables to swap samples. When the retainer (2) is removed, the upper measurement chamber is lowered to the measurement position. The thickness transferors (7) land on the surface of the sample. Their weight is just 0.1 gram and the surface area is 4 cm². The pressure on the sample is very low and has no effect on its physical-mechanical properties. When the samples are subjected to high temperature, their polymerized starts. The sample structure becomes porous and the thickness transferor rises to a certain height. This height depends on the composition of the PVC resin and on the temperature of polymerization. During the polymerization process, heat and gas are produced in the sample due to exothermal reaction. The thickness transferors transfer the thickness of the measurement sample to the measurement chamber (8). By transferring the thickness to the measurement chamber, the influence of turbulent temperature streams on the accuracy of measurement is eliminated. Piezoelectric transducers (9) are operating in the transmission-reception mode of measurement signals. The calibrated length channel (10) provides a time interval, required to eliminate the influence of variations in sound velocity on measurement results. The design of the upper chamber has a uniform measurement environment, required for precise acoustic measurements. In this environment measurement and calibrated length channels are installed. The holders of the piezoelectric sensors (11, 12, 13) have this irregular bracket shape to compensate the effects of a linear thermal expansion. This design of the electro-acoustic system provides ability to swap samples quickly and avoids the effects of temperature on measurement results.

Conclusions

To measure accurately small distances using an echolocation-based distance meter, the measurement environment has to be controlled, because it is the main source of measurement errors.

To avoid the influence of a turbulent environment on measurement results, the environment of the measurement signal’s path must be separated from the turbulent environment around the object.

References

16


A. Petrauskas

Dvianalio idolokacino mažų atstumų matuoklių matavimo tikslumo padidinimas

Reziumė

Bekontakčiais atstumo matuokliais galima matuoti įvairių plevlių storių matavimams polimerizacijos procesų metu. Matuojant PVC dervos pagrindu sudarytą sudarytą plevlių storį, jų polimerizacijos metu auštošo temperatūroje susidaro turbulentinai srutai, kurie turi įtakos storių atstumo matavimams pavikslomai. Šiame straipsnyje aprašoma, kaip galima išsivesti turbulenta atstumo matavimai būda, kai įjungti elektronikos įrenginius konstrukciją, leidžianti išsivesti turbulentių srutų įtakos matavimų rezultatams.

Pateikta spaudai 2010 06 08