NDT.net May 2003, Vol. 8 No.05

Prediction of ultrasonic waveforms in highly attenuating plastic materials

R. Kazys, L. Mazeika, R. Raišutis
Prof. K. Baršauskas Ultrasound Institute,
Kaunas University of Technology
Corresponding Author Contact:
Email: rkazys@tef.ktu.lt, Web: www.ultrasonics.ktu.lt

This article was first published in the Journal Ultragarsas,
a publication of the Ultrasound Institute at Kaunas University of Technology.

Introduction

Prediction approach

Estimation of attenuation

Estimation of dispersion

Prediction of the ultrasonic waveforms

Conclusions

Reference

  1. Кей Д., Лэби Т. Таблицы физических и химических постоянных. Перевод под редакцией Яковлева К. П. М. 1962. С.72.
  2. Wang H. Improved ultrasonic spectroscopy methods for characterisation of dispersive materials. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. July 2001. Vol.448. No.4. P.1060-1065.
  3. Narayna P.A., Ophir J. A closed form method for the measurement of attenuation in nonlinearly dispersive media. Ultrasonic Imaging. 1983. No.5. P.17-21.
  4. Kažys R., Mažeika L., Šliteris R., Voleišis A. Ultrasonic spectrometry for the investigation of biological media. ISSN 1392-2114 Ultragarsas. 1997. Nr.2 (28). P.44-46.
  5. O’Donell M., Jaynes E.T., Miller J.G. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity. J.Acoust. Soc.Amer. 1981. Vol.69. No 3. P.696-701.
  6. He P. Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. January 1998. Vol.45. No.1. P.114-125.
  7. Zellouf D., Jaet Y. Ultrasonic spectroscopy in polymeric materials. Application of the Kramers-Kronig relations. J. Appl. Phys. September 1996. Vol.80(5). No.1. P.2728-2732.
  8. He P. Experimental verification of models for determining dispersion from attenuation. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. May 1999. Vol.46. No.3. P.706-714.
  9. Santos J. B. The power of ultrasonic spectroscopy in the complete characterization of materials. Insight. December 1998. Vol.40. No.12. P.855-859.
  10. Kline R.A. Measurement of attenuation and dispersion using an ultrasonic spectroscopy technique. J. Acoust. Soc. Amer. August 1984. Vol.76. No.2. P.498-504.
  11. Jurkonis R., Lukoševicius A. The ultrasonic field in lossy media: some simulation and experimental results. ISSN 1392-2114 Ultragarsas. 2000. No.2(35). P.7-16.
  12. Szabo T. L. Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Amer. January 1995. Vol.97. No.1. P.14-24.
  13. Jongen H. A. H., Thijssen J. M. A general model for the absorption of ultrasound by biological tissues and experimental verification, J. Acoust. Soc. Amer. February 1986. Vol.79. No.2. P.535-540.
  14. He P., Greenleaf J. F. Application of stochastic analysis to ultrasonic echoes-Estimation of attenuation and tissue heterogeneity from peaks of echo envelope. J. Acoust. Soc. Amer. February 1986. Vol.79. No.2. P.526-534.
  15. Che T., Ho B., Zapp H.R. Impedance and attenuation profile estimation of multilayered material from reflected ultrasound. IEEE Transactions on instrumentation and measurement. August 1991. Vol.40. No.4. P.787-791.
  16. Baldeweck T., Laugier P. Application of autoregressive spectral analysis for ultrasound attenuation estimation: interest in highly attenuating medium. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. January 1995. Vol.42. No.1. P.99-109.

© NDT.net - info@ndt.net |Top|