NDT.net July 2003, Vol. 8 No.07

Noisy signal processing in real time DSP systems

E. Kazanavicius, A. Mikuckas, I. Mikuckiene, V.Kazanavicius
Digital Signal Processing Laboratory, Computer Department, Kaunas University of Technology
Studentu 50-214c, 3031 Kaunas, LITHUANIA, E-mail: ekaza @dsplab.ktu.lt
Published in Ultragarsas Journal 2003 Vol 46 No1

Introduction

Signal processing in ultrasonic NDT systems

Band modification by moving average

Averaging

Noise cancellation by subtraction

Inverse filtering

Wavelet transform based noise reduction

Wavelet transform based signal processing method for ultrasonic NDT system

Conclusions

References

  1. Sinclair A. An analysis of ultrasonic frequency response for flaw detection: a technique review. Materials evaluation. 1989. Vol. 43. P. 870-883.
  2. Fomitchev M. I. et. al. Ultrasonic pulse shaping with optimal lag filters. Int. J. Imaging syst. technol. (USA). 1999. Vol. 10. P. 397-403.
  3. Sallard J. et. al. Use of a priori information for the deconvolution of ultrasonic signals. Review of progress in quantitative nondestructive evaluation. 1998. P. 735-742.
  4. Crawford D. C. et. al. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction. Ultrasound Med. Biol. (UK). 1993. Vol. 19. P. 469-485.
  5. Andrade Lima E. et. al. Image processing techniques to remove depth bias effects in magnetic source images of deep cracks. Review of progress in quantitative nondestructive evaluation. Plenum press. New York. 1997. Vol.1. P. 797-803.
  6. Jianzhong C. et. al. Noise analysis of digital ultrasonic system and elimination of pulse noise. Int. J. Pressure vessels piping. 1998. Vol.75. P. 887-890.
  7. Bengt M. et. al. Weighted least squares pulse shaping filters with application to ultrasonic signals. IEEE Trans. UFFC. 1989. Vol. 36. P. 109-113.
  8. Venkantraman S. et. al. Combining pulse compression and adaptive drive signal design to inverse filter the transducer system response and improve resolution in medical ultrasound. Med. Biomed. eng & comp. 1996. P/318-320.
  9. Izguierdo M. A. G. et. al. Multipattern adaptive inverse filter for real time deconvolution of ultrasonic signals in scattering media. Sensors and actuators. 1999. Vol. 76. P. 26-31.
  10. Lim J. S. et al. Advanced topics in signal processing. Prentice Hall. Tokyo. 1988. P. 1-55.
  11. Daubechies.Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol 61. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
  12. Donoho D. L. and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of American Statistical Association, 1995, 1200-1224.
  13. Mallat S. A theory for multiresolution signal decomposition: The wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1998, 674-693.
  14. Donoho D. L.and I. M. Johnstone.Minimax estimation via Wavelet Shrinkage. The Annals of Statistics, 26, 1998, 879-921.
  15. Neumann M. H. and Von Sachs R.Wavelet thresholding: beyond the Gaussian I.I.D. situation. In A. Antoniadis and G. Openheim Wavelets and Statistics, New York: Springer-Verlag 1995, 302-329.

E. Kazanavicius, A. Mikuckas, I. Mikuckiene, V. Kazanavicius

© NDT.net - info@ndt.net |Top|