NDT.net • May 2006 • Vol. 11 No.5 
Love Surface Waves for Materials EvaluationEdouard G. NesvijskiCivil Engineering Department University of Minnesota Minneapolis, MN 55455 Email: nesvi002@umn.edu IntroductionOriginal Love surface wave could be considered as wave propagating through a superficial solid layer covering a halfspace solid body [1]. Historical overview of these types of surface waves starts with the first papers published by Love [2,3]. Then this problem was rediscovered and deeply analyzed in several papers [47]. Interest to Love surface waves has been supported by problems of geophysics and nondestructive testing of layered materials [812]. Results of a number of theoretical and applied researches of Love waves propagation were published during early nineties of the last century [1319]. Some new approaches to practical applications of Love waves were made [2023] and contemporary computational features for analysis of Love waves were published during the latest decade [24,25]. An important potential field of application of these types of waves is evaluation of laminated materials and coatings, including layeredsilicates and thin film nanocomposites. Surface acoustic Love waves may become a powerful instrument for materials evaluation in laboratory as well as in situ keeping in mind high level of existing low frequency and ultrasonic measurement means for nondestructive testing (NDT). However, these types of surface waves have not yet become an everyday tool for practical NDT applications. One of the main reasons explaining this delay is a gap between the pure theory and practical needs laying in interpretation of measuring results. This chapter is devoted to the main features of Love surface wave propagation and their consideration for several important practical cases using computational approaches and graphical visualization of wave velocities and attenuation. Implementation of the computational approach given in this paper fills the gap between the theory and practical needs using supplemental MATLAB codes, that allow to apply Love wave technique to practical tasks of materials evaluation.Models and FormulationsFor easy understanding of the problem it has been assumed that the halfspace solid body and the layer covering it are both homogeneous and isotropic, but each of them has different elastic properties. Thickness of the layer h is and its elastic properties could be described by moduli of elasticity such as shear module µ_{L} , and density r_{L} . The halfspace body could be also described by the similar parameters as shear module µ and density r correspondently. A computational model in Cartesian coordinates X and Z for analysis of Love wave propagation in a complex media is shown in the Figure 1.
Boundary conditions for this model are considered as continuous motions in the layer and the halfspace body, which are determined by continuity of displacements and stresses along the verge of the halfspace body and bonded surface of the layer where and absence of stress on the free surface of the layer, where z = h . Wave motion in the model presented in the Figure 1 is considered for horizontal polarization, where layer and plane body generate special types of surface waves with characteristics depending on material properties and layer thickness. For boundary conditions for this model displacements U_{Y} ≠ 0 , U_{X} = 0 , U_{Z} = 0 , and derivation for and plane waves propagating in the direction X with displacement U_{Y} which perpendicular to this direction, wave equation will be displayed as a partial differential equation [1]
The simple example of these types of waves with horizontal polarization in plane could be expressed as an expression:
This wave is unstable, and any small change in boundary conditions could transfer it to a different mode of surface wave. That is why this wave could exist only for limited cases of surface wave propagating through a superficial layer of a certain thickness over halfspace body and materials elastic properties of the layer and the halfspace body. The presented explanation allows to approached Love wave problem solution by putting limitation to permanent layer thickness h = const.
Nonlinear equation (7) allows analyzing values of Love wave velocities V for different elastic properties of materials in layer and halfspace body presented by shear modules µ,µ_{L} , densities r,r_{L} and layer thickness h for different angular frequencies w. Computational analysis of Love waves propagationGenerally the nonlinear equation (7) contains complex roots, and for some combinations of materials elastic parameters and thickness are generating real or imaginary roots. Moreover, Love waves may content different modes depending on frequency w of propagating waves and materials elastic properties. It is very important to present Love equation as a function regarding wave velocity and layer thickness for visualization of dispositions of Love equation roots as crosssections of "zero plane" and the function below:
The Figure 3 presents Love equation as a function for frequency f=500 kHz:
The Figure 4 presents Love equation as the function for frequency f=1000 kHz:
Visible crosssections of the calculated functions with the "zero plane" demonstrate dispositions of the roots of Love equation. Solutions of equation (7) could be obtained by computational approach using the GaussNewton algorithm. The leastsquares optimization method was implemented for calculation of complex roots of Love equation (7) using MATLAB codes. Calculated roots of Love equation are wave numbers. Love waves velocities could be calculated using those wave numbers and values of frequency. Typical graphs of calculated Love wave velocities are presented in the Figure 5, where relative parameter of ratio between wave length l = 2pV/w and layer thickness h:
Increase of frequency changes conditions of Love waves propagation and affects calculation results. Calculated data of Love waves velocities demonstrate these changes for frequency f=500 kHz in the Figure 6.
Considerable increase of frequency (over >1000 kHz) is displaying special behavior of complex roots. There is a "dead zone" for Love wave propagations, which is shown in the Figure 7.
It is possible to observe different zones of roots:
a) a zone where imaginary roots are equal to zero and real roots exist; A physical explanation of the meaning of complex roots and complex Love waves velocities could be presented as complex data, where the real roots present velocity of pure Love waves and imaginary roots describe transformation of these waves to other types of waves. In the case (a) real roots present velocities of pure Love waves (imaginary roots are equal to zero) propagating in media. In the case (b), when imaginary roots have nonzero values, reflection of waves or their transformation to other types of surface and bulk waves takes place. Some combinations of material shear modules µ,µ_{L} , densities rr_{L} and frequency w of propagating waves are generating conditions for the "dead zone" in the case (c). Freelance amplitudes of Love waves could be extracted from (3), (4) and (5) as displacements in the following forms:
Calculation of these displacements (8) is shown in the Figure 8.
The Figure 8 demonstrates that horizontal component for Love waves propagation. does not demonstrate any dependency of waves attenuation on frequency of propagating waves. It is clear that condition V_{t2}<V_{t2} generates real roots of equation (7) and Love wave numbers exist for limited values between wave numbers of shear waves if layer k_{t1} and halfspace k_{t2} have relation:
Interpretation of Love waves behavior in layered materialsIt is possible to see from the graphs and formulae (4) and (8) that the displacements are constant through the layer thickness, but they depreciate along the border between the layer and the halfspace. Different conditions could be considered:
Some practical cases of Love wave applications"Hard" layer on "soft" halfspace:The case of the "Hard" layer on the "soft" halfspace represents a condition, when velocity in the layer material is higher than velocity in the halfspace. Values of shear bulk waves velocities in the layer and halfspace material are used for determination of elastic properties of these materials. An example of Love wave velocities calculation from equation (7) for shear modules relation µ/µ_{L}=1.55 and shear wave velocity in layer V_{t1}=1200 m/s, shear wave velocity in halfspace V_{t2}=1000 m/s, layer thickness h=0.015 m, and frequency f=100 kHz is given in the Figure 9 below:
"Soft" layer on the "hard" halfspace: The case of the "soft" layer on the "hard" halfspace represents a condition, when velocity in the layer material is lower than velocities in the halfspace. An example of Love wave velocities calculation form equation (7) for shear modules relation µ/µ_{L}=0.8 and shear wave velocity in layer V_{t1}=1000 m/s, shear wave velocity in halfspace V_{t2}=1200, layer thickness h=0.015 m, and frequency f=500 kHz is given in the Figure 10.
Multimode solution for Love waves in a thin layer: The case of a very thin layer on the halfspace represents a condition, when multimode solution for Love wave propagation exists. It is possible to demonstrate that for some combinations of parameters Love waves may transform to other types of waves or may be presented by a multimode propagation. A solution for a thin layer is shown in the Figure 11 for shear modules relation µ/µ_{L}=1.16 and shear wave velocity in layer V_{t1}=1000 m/s, shear wave velocity in halfspace V_{t2}=900, layer thickness h=0.001 m, and frequency f=700 kHz.
ConclusionsLove waves applications for materials testing need special attention because of complicity of problem and high dependency of these waves on a combination of parameters of materials in the layer and the halfspace as well as a relation between the layer thickness and frequency of waves utilized for material evaluation. For each case of evaluation it is possible to apply computational approach for data analysis, optimization of measuring procedure and modeling of result. Therefore, practical applications of Love surface waves require preliminary analysis and adjustment of materials evaluation procedure. MATLAB codes for Love waves propagation analysis allow to facilitate evaluation procedure and interpretation of phenomena of these waves for different practical cases.References

© NDT.net  Top 