·Table of Contents
·Materials Characterization and testing

Estimation of creep voids using a progressive damage model and neural network

Hyunjo Jeong
Division of Mechanical Engineering, Wonkwang University, 344-2 Shinyong-dong, Iksan, Jeonbuk 570-749, South Korea
Phone: +82-653-850-6690, Fax: +82-653-850-6691
Email : hjjeong@wonkwang.ac.kr


1. Introduction

3. Micromechanics Model

4. Neural network

5. Conclusions



  1. Willems, H., Bendick, W., and Weber, H., 1986, "Nondestructive Evaluation of Creep Damage in Service Exposed 14 MoV 63 Steel," in Nondestructive Characterization of Materials II, J. F. Bussiere, J.-P. Monchalin, C. O. Rudd and R. E. Green, Jr., Eds., Plenum Press, New York, pp. 451- 460.
  2. Birring, A. S., Alcazar, J. J., and Hanley, J. J., 1989, "Detection of Creep Damage by Ultrasonics," in Review of Progress in Quantitative NDE, Vol. 8B, pp. 1833- 1840.
  3. Ledbetter, H. M., Fields, R. J., and Datta, S. K., 1987, "Creep Cavities in Copper: An Ultrasonic Velocity and Composite Modeling Study," Acta Metallica, Vol. 35, pp. 2393- 2398.
  4. Hirao, M., Morishita, T., and Fukuoka, H., 1990, "Ultrasonic Velocity Change with Creep Damage in Copper," Metallic Transactions, Vol. 21A, pp. 1725- 1732.
  5. Morishita, T., and Hirao, M., 1997, "Creep Damage Modeling Based on Ultrasonic Velocities in Copper," Int. J. Solids Structures, Vol. 34, pp. 1169- 1182.
  6. Jeong, H., and Hsu, D. K., 1996, "Quantitative Estimation of Material Properties of Porous Ceramics by Means of Composite Micromechanics and Ultrasonic Velocity," NDT&E International, Vol. 29, pp. 95- 101.
  7. Dunn, M. L., and Ledbetter, H., 1996, "Estimation of the Orientation Distribution of Short-Fiber Composites Using Ultrasonic Velocities," J. Acoust. Soc. Am., Vol. 99, pp. 283- 291.
  8. Negley, M., Govindaraju, M. R., and Jiles, D. C., 1984, "Neural Network Prediction of Creep Damage Based on Magnetic Properties in Power Plant Piping", in Review of Progress in Quantitative NDE, D.O. Thompson and D.E. Chimenti, eds., Vol. 13, Plenum Press, New York.
  9. Ratclife, R. T., 1965, "The Measurement of Small Density Changes in Solids," British Journal of Applied Physics, Vol. 16, pp. 11931196.
  10. Hill, R., 1963, "Elastic Properties of Reinforced Solids: Some Theoretical Principles," J. Mech. Phys. Solids, Vol. 11, pp. 357- 372.
  11. Mori, T., and Tanaka, K., 1973, "Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metallurgica, Vol. 21, pp. 571- 574.
  12. Benveniste, Y., 1987, "A New Approach to the Application of Mori-Tanaka's Theory in Composite Materials," Mechanics of Materials, Vol. 6, pp. 147- 157.
  13. Jeong, H., Hsu, D. K., Shannon, R. E., and Liaw, P. K., 1994, "Characterization of Anisotropic Elastic Constants of Silicon- Carbide Particulate Reinforced Aluminum Metal Matrix Composites: Part II. Theory," Metallurgical and Materials Transactions A, Vol. 25A, pp. 811- 819.
  14. Eshelby, J. D., 1957, "The Determination of the Elastic Field of an Ellipsoidal inclusion and Related Problems," Proceedings of the Royal Society of London. Vol. A241, pp. 376- 396.
  15. Mura, T., 1987, Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp. 74- 84.
  16. Dunn, M. L and Ledbetter, H. M., Heyliger, P. R., and Choi, C. S., 1996, "Eslastic Constants of Textured Short-Fiber Composites," J. Mech. Phys. Solids, Vol. 44, pp. 1509- 1541.

© AIPnD , created by NDT.net |Home|    |Top|