·Home
·Table of Contents
·Late Received Papers

ON THE NEW METHOD TO COMPUTE THE FATIGUE THRESHOLD - INFLUENCE OF THE MICROSTRUCTURE AND RESIDUAL STRESSES

K.NECIB ; M.A. Belouchrani ; A. BRITAH
Laboratoire Génie des Matériaux,
Ecole Polytechnique
Bp 17, Bordj-El-Bahri - Algérie,
Tél. : (2132) 86.34.69 / (2132) 42.67.53
Fax : (2132) 86.32.04
Contact

Abstract

Introduction

Fatigue threshold and influence of the microstructure

Formulation of the shakedown theorem for cracked body

Shakedown stress intensity factor

Numerical assessment

Numerical examples

Conclusion

References

  1. Belouchrani M. A., "Contribution to the shakedown analysis of inelastic cracked structures", Ph. D. Thesis, University of Lille, (1997).
  2. Belouchrani M. A. and Weichert D., "An extension of the static shakedown theorem to inelastic cracked structures", International Journal of Mechanical Sciences, 41, 163-177, (1999).
  3. Nguyen Q. S., "Méthodes énergétiques en mécanique de la rupture", Journal de Mécanique, vol.19, N° 2, (1980).
  4. Griffith A. A., "The phenomena of rupture and flow in solids", Philosophical Transactions of the Royal Society of London A221, 163-198, (1921).
  5. Griffith A. A., "The theory of rupture", Proceedings of First International Congress of Applied Mechanics, Delft, 55-63, (1924).
  6. Weichert D., "Failure assessment of structures using refined material laws", In: Advances in constitutive laws for Engineering Materials, Proc. ICCLM 1989, Ed.: Jinghong F. & Murakami S., Pergamon Press, 665-670, (1989).
  7. Huang Y. and Stein E., "Shakedown of a cracked body consisting of kinematic hardening material.", Engineering Fracture Mechanics, 54, 1, 107-112, (1996)
  8. Huang Y. and Stein E.; "An analytical method for shakedown problems with linear kinematic hardening materials", International Journal solids and Structures, 31, 18, 2433-2444, (1994).
  9. Neuber H., Kerbspannungslehre, Springer-verlag, Berlin, (1958).
  10. Irwin G. R., "Relation of stresses near a crack to the crack extension force", International Congress in Applied Mechanics, pp. 245, Brussels, (1956).
  11. Barthelemy B., "Notions pratiques de la mécanique de la rupture", Eyrolles, Paris, (1980).
  12. Bui H. D., "Mécanique de la rupture fragile", Masson, Paris, (1978).
  13. Radhakrishna V. M., In C. J. BEEVERS (Ed.), Fatigue '84, Proc. 2nd International Conference On Fatigue and Fatigue Thresholds, Birmingham, September 3-7, 1984, Engineering and Materials Advisory Services, Warley, 371, (1984).
  14. Taylor D., In : C. J. BEEVERS (Ed.), Fatigue '84, Proc. 2nd International Conference On Fatigue and Fatigue Thresholds, Birmingham, September 3-7, 1984, Engineering and Materials Advisory Services, Warley, 479, (1984).
  15. Wasen J., Hamberg K. and Karlsson B., "The influence of Grain Size and Fracture Surface Geometry on the Near-threshold Fatigue Crack Growth in Ferritic Steels", Materials Science and Engineering A, 102, 217-226, (1988).
  16. Lemaitre J. and Chaboche J. L.," Mécanique des matériaux solides", Dunod, Paris, (1985).
  17. Neuber H., "Über die Berücksichtigug der Spannungskonzentration bei Festigkeitsberechnungen", Konstruktion 20 (7), 245-251, (1968).
  18. Creager M., Master Thesis, Lehigh University, (1966).
  19. Radaj D. and Zhang S., "On the relation between notch stress and crack stress intensity in plane shear and mixed mode loading", Eng. Frac. Mech., vol. 44, N°5, 691-704, (1993).
  20. Pierre D. A. and Lowe M. J., "Mathematical programming via Augmented Lagrangians", London : Addision-Wesley, (1975).
  21. Gallagher R. H. and Dhalla A. K., "Direct flexibility finite element elasto-plastic analysis", Englewood Cliffs, New Jersey, USA, (1975).
  22. Belytschko T. and Hodge P. G. "Plane Stress limit Analysis by Finites elements", Proc. ASCE, Journal Engineering Mechanics Division, vol. 96, EM 6, 931-944, (1970).
  23. Gross-Weege J. and Weichert D., "Elastic-plastic shells under variable mechanical and thermal loads", International Journal of Mechanical Sciences, 34, 863-880, (1992).
  24. Xu-Dong Li and Edwards L., "Theoretical Modeling of Fatigue Threshold for Aluminum Alloys", Engineering Fracture Mechanics, 54, 35-48, (1996).

© NDT.net - info@ndt.net |Top|