·Home
·Table of Contents
·Computer Processing and Simulation

Flow Pattern Identification based on Fuzzy Neural Network Using Multi-Electrode Capacitance Sensor

Xia Jingbo, Yang Xiatie
Airforce university of engineering, Xi'an 710077, P.R.China
Wang Shi
PO Box 321, School of Information , Northeastern University, Shenyang 110006, P.R.China
E-mail: MCGMZWZC @pub.ln.cninfo.net
Tel&Fax: 86-24-23891977
Contact

Abstract

1. INTRODUCTION

2. SENSOR STRUCTURES[1][3][11]

3. ANN MODEL FOR FLOW PATTERN IDENTIFICATION [2][4][5][7] [8][9][12]

4. RESULTS of FLOW PATTERN IDENTIFICATION

Flow pattern Recognition rate
Empty flow 93.6 %
Full flow 94.1 %
Stratified flow(1/2) 87.5 %
Stratified flow(1/3) 86.2 %
Stratified flow(2/3) 90 %
Annular flow 84.6 %
Core flow 85.3 %
Others flow 81.3 %
Table 1 : Results of flow pattern identification

5. CONCLUSION

REFERENCES

  1. S.M.huang, et al ,Electronic tranducers for industrial measurement of low value capacitances,J.Phys.E:Sci.Instrum,1988,21:242-250
  2. Widrow, R. Winter and R. Baxter. Layered Neural Networks for Pattern Recognition. IEEE Transaction on Acoustics, Speech and Signal Processing, 1988, Vol. 36, No. 5, 1109-1118
  3. S.M.Huang, et al, Tomographic imaging of two-component flow using capacitance sensors,J.Phys.E:Sci.Instrum.1989,22:173-177
  4. H. Chen. On the Relationships Between Statistical Pattern Recognition and Artificial Neural Networks. International Journal of Pattern Recognition and Artificial Intelligence, 1991, Vol.4, No. 4, 153-159
  5. S. I. Horikawa, T. Furuhashi and Y. Uchikawa. On Fuzzy Modeling Using Fuzzy Neural Networks with the Backpropagation Algorithm. IEEE Transaction neural Networks, 1992, Vol. 3, No. 5, 801-806
  6. G.A.Carpenter and S.Grossbeg,A self-organizing neural network for supervised learning,recognition and prediction,IEEE Communitions Magazine,30(9),38-49,1992
  7. T. Lin and C. S. Lee. Reinforcement Structure/Parameter Learning for Neural Network-Based Fuzzy Logic Control System. In: Proceeding of International Conference on Fuzzy System. 1993, 88-93
  8. A Y Nooralahiyan,B SHoyle,N J Bailey,Pattern association and feature extraction in electrical capacitance tomography,ECAPT'94,266-275
  9. Nooralahiyan, A.Y., et al. Performance of neural network with noise and parameter variation in electrical capacitance tomography Proc. 4 th ECAPT Conf. Bergen 6-8 April 1995, pp. 420-424.
  10. A.G.Parlors,B.Fernandez and A.F.Atiya,An accelerated learning algorithm for multilayer perceptron networks,IEEE Transactions on Neural Networks,Vol.5,No.3,1994, pp.493-497
  11. W Q Yang,et al, Electrical capacitance tomography3/4from design to applications, Measurement+Control , 1995,28:261-266
  12. Peng, L., et al., The application of artificial neural networks to ECT system, Frontier in Industrial Process Tomography II, April 1997, Delft, pp. 287-292.

© AIPnD , created by NDT.net |Home|    |Top|