·Home
·Table of Contents
·Computer Processing and Simulation

Flaw echo Location based on the Wavelet transform and Artificial Neural Network

LIU Zhenqing
Institute of Acoustics, Tongji University
Shanghai 200092, P.R.China
Contact

Abstract

1. Introduction

2. Wavelet transform and feature extraction

3. Artificial neural network methods

Fig 3: architectural graph of multilayer perceptron Fig 4: architectural graph of neural net Fig 5: Hyperbolic tangent function

4. Experimental results

5. Conclusions

Acknowledgement

References

  1. C.H.Chen, Gwo Giun Lee, "Neural netwoks for ultrasonic NDE signal classification using time-frequency analysis", ICASSP'93, Vol.1,pp493-495
  2. T.Rajn Damara, et al., "A self-learning neural net for ultrasonic signal analysis", Ultrasonics, 1992, 30(5):317-324
  3. T.C.K.Molyneaux, S.G.Millard, J.H.Bungey and T.Q.Zhou, "Radar assessment of structural concrete using neural networks", NDT&E International, 1995, 28:281-288
  4. Z.Q.Liu, M.D. Lu and M.Wei, "Structure noise reduction of ultrasonic signals using artificial neural network adaptive filtering", Ultrasonics, 1997, 35:325-328
  5. I.Daubechies, "Orthonormal basis of compactly supported wavelets", Comm.Pure Applied Math., 1988, 41:909-929
  6. S.Mallat, "Multriesolution approximations and wavelet owhonormal baser of L2(IR`)", Trans Am. Math. Soc., 1989, 315:69-87
  7. Oliver Rioul and Pierre Duhamel, "Fast algorithms for discrete and continuous wavelet transform", IEEE Trans. On Information Theory, 1992, 38(2):569-586
  8. D.R.Hush and B.G.Horne, "Progress in supervised neural networks", IEEE SP. Magazine, 1993, 10(1):8-39

© AIPnD , created by NDT.net |Home|    |Top|