Multidomain modelling of the magneto-mechanical behaviour of Dual Phase steels

F S. Mballa Mballa (a)(b), O. Hubert (a), S. Lazreg (a), P. Meilland (b)

(a) LMT-Cachan (ENS-Cachan/UMR CNRS 8535/UPMC/Pres Universud Paris) 61, avenue du président Wilson 94235 Cachan Cedex France
(b) ArcelorMittal Maizières Research BP 30320 - Voie Romaine F-57283 Maizières-lès-Metz Cedex France
Outline

- Introduction
- Magneto-mechanical behaviour of DP steels
- Origin of the magneto-mechanical behaviour
- Multidomain modelling
- Multidomain modelling of DP steels
- Conclusions
Introduction

Heat Treatment of DP steels

microstructure fluctuation

$$\Delta T \rightarrow \Delta \% \text{phases}$$

consequences

- Mechanical behaviour

Phase diagram of a steel

T(°C)

%C

850
700

γ + α

α + α'

γ

α

γ austenite

primary nucleates composition c_n, c_n

α grows composition c_n, c_n

A_3

$\gamma + \alpha$

γ

Cold Rolling

Hot Rolling

Quenching

850 °C

700 °C
The mechanical behaviour of a DP steel exhibits both high strength and high ductility. These properties come from the dual phases microstructure (ferrite α + martensite α').
Introduction

Industrial context

- **Microstructure identification by magnetic NDT measurement**
 - influence of the process (hot rolling, quenching,...) on the microstructure.
 - mechanical behaviour due to the microstructure

- **No prediction nowadays**
 - unknown phases behaviour.
 - empirical identification

research context

- **coupled modelling of the magneto-mechanical behaviour**
 - phase modelling (*ferrite / martensite*)
 - heterogeneous microstructure (*localization*)
 - inverse identification

- **main problems**
 - magneto-elastic coupling
 - phases behaviour
 - computing time
Magneto-mechanical behaviour of DP steels

Magnetization $\vec{M}(H)$
Magnetostriiction $\varepsilon^H(\vec{M})$
strain
heterogeneous media

%martensite
composition
$= \mathcal{F}(T)$

dual phase microstructure

ferromagnetic media
Magneto-mechanical behaviour of DP steels

- Specimen
- Strain Gauges
- Secondary Coïlling \((B-Coil)\)
- Primary Coïlling \((P-Coil)\)
Magneto-mechanical behaviour of DP steels

influence ΔT on DP steel behaviour

<table>
<thead>
<tr>
<th></th>
<th>DP #1</th>
<th>DP #2</th>
<th>DP #3</th>
<th>DP #4</th>
<th>DP #5</th>
<th>DP #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_y (MPa)</td>
<td>473</td>
<td>480</td>
<td>467</td>
<td>467</td>
<td>479</td>
<td>472</td>
</tr>
<tr>
<td>σ_{max} (MPa)</td>
<td>787</td>
<td>793</td>
<td>785</td>
<td>785</td>
<td>791</td>
<td>785</td>
</tr>
</tbody>
</table>

mechanical properties

Magnetic behaviour

Magnetostrictive behaviour
Multidomain modelling

Single crystalline Modelling

Hypothesis
- Domains homogeneous magnetization
- Grains homogeneous stress & strain
- Cubic symmetry
- Loading direction $\vec{H} = h.\vec{n}_c$

Magnetic microstructure: Fe 3%Si

[Habert, 1998]

simplified vision of the magnetic microstructure
(cubic anisotropy)

Magnetic free energy [Daniel 2008]

$$\mathcal{W}^\alpha = \mathcal{W}_z^\alpha + \mathcal{W}_a^\alpha + \mathcal{W}_\sigma^\alpha$$

$$\mathcal{W}^\alpha = -\mu_0 \vec{H}.\vec{M}^\alpha + K_1 \left(\gamma_1^2 \gamma_2^2 + \gamma_2^2 \gamma_3^2 + \gamma_1^2 \gamma_3^2 \right) - \sigma : \epsilon^\alpha_{\mu}$$
Multidomain modelling

Single crystalline modelling

State variables
- Magnetization direction of each domain \((\phi_{\alpha}, \theta_{\alpha})\)
- Volume fraction of a domain \(f_{\alpha}\)

\[\theta_{\alpha} \in [0, \pi] \quad \phi_{\alpha} \in [0, 2\pi]\]

Analytic minimization
\[(\phi_{\alpha}, \theta_{\alpha}) = \min(W_{\alpha}) \]

Constitutive laws
\[\phi_{\alpha}(H, \sigma, \bar{n}_c) \quad \theta_{\alpha}(H, \sigma, \bar{n}_c) \]

Stochastic constitutive law
\[f_{\alpha} = \frac{\exp(-A_sW_{\alpha})}{\sum_{\alpha} \exp(-A_sW_{\alpha})} \quad \sum_{\alpha} f_{\alpha} = 1 \]

Homogenization
\[\bar{M} = \sum_{\alpha} f_{\alpha}\bar{M}_{\alpha} \quad \epsilon^\mu = \sum_{\alpha} f_{\alpha}\epsilon_{\alpha}^\mu \]
The polycrystalline magnetic and magnetostrictive behaviour is similar to the single crystal behaviour loaded along a specific direction « mean direction » of the crystal.
Multidomain modelling

Polycrystalline modelling

Polycrystal hypothesis
- ISOTROPIC
- HOMOGENEOUS FIELD

An isotropic polycrystal loaded along one direction corresponds to a single crystal loaded along all directions.

Single crystal hypothesis
- CUBIC SYMMETRY

For cubic structure, a loading direction finds its equivalence inside the standard triangle.

what is the equivalent loading direction (of the single crystal) we could use to compute the polycrystalline behaviour with a single crystalline modelling?
Multidomain modelling

Polycrystalline modelling

Search for the optimal loading direction of the single crystal

The first approximation is to consider the single crystal behaviour as **ISOTROPIC** and search for an average direction of the standard triangle

The first approximation is to consider the single crystal behaviour as **ISOTROPIC** and search for an average direction of the standard triangle.

ISOTROPIC

\[\vec{n} = \langle \vec{n}_i \rangle \]

HOMOTHETIC ANISOTROPY

\[\vec{n} = \beta \vec{n}_i \]

ANISOTROPY

\[\vec{n} = F(\beta, \vec{n}_i, \vec{H}, \sigma) \]
Multidomain modelling

Polycrystalline modelling

Average direction

\[
\bar{n} = \frac{1}{S} \iint \bar{n}_i \, dS
\]

\[
\bar{n} = \left(\frac{\cos \phi \sin \theta}{\sin \phi \sin \theta}, \cos \theta \right)
\]

\[
(\phi, \theta) = (38^\circ, 77^\circ)
\]

Optimization of angles is required to take account single crystal anisotropy
Multidomain modelling

Dual Phase modelling: Localization

- modelling choices \implies Magnetic inclusions surrounded by the equivalent homogeneous media

\[
\bar{H}_i = \bar{H} + \frac{1}{3 + 2\chi_o} (\bar{M} - \bar{M}_i) \bar{H}_{di}
\]

\[
\sigma_i = \Sigma + C : (I - S^E) : (\varepsilon_i^\mu - \varepsilon^\mu_i) \sigma_i
\]

\[S^E = Eshelby's\ tensor\]

\[
\bar{M} = f_{fe} \bar{M}_{fe} + f_m \bar{M}_m
\]

\[
\varepsilon^\mu = f_{fe} \varepsilon^\mu_{fe} + f_m \varepsilon^\mu_m
\]

\(f_m = martensite\ fraction\)

\(f_{fe} = ferrite\ fraction\)
Multidomain modelling

- ferrite / martensite modelling results

- ferrite (well known)

- martensite (unknown magnetic properties)

A C38 carbon steel has been considered (wt%C=0.38%).

C38 as cast

100% martensitic microstructure, close to DP steels
martensitic phase

C38 quenched
Multidomain modelling

- ferrite / martensite Modelling results

- model parameters and physical constants

<table>
<thead>
<tr>
<th></th>
<th>ferrite</th>
<th>martensite</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_c(\degree)$; $\phi_c(\degree)$</td>
<td>88; 41</td>
<td>90; 36</td>
</tr>
<tr>
<td>λ_{100}</td>
<td>21×10^{-6}</td>
<td>-21×10^{-6}</td>
</tr>
<tr>
<td>λ_{111}</td>
<td>3.1×10^{-6}</td>
<td>10×10^1</td>
</tr>
<tr>
<td>$K_1(J.m^{-3})$</td>
<td>4, 8×10^3</td>
<td>1.71×10^6</td>
</tr>
<tr>
<td>$M_s(A.m^{-1})$</td>
<td>1.05×10^6</td>
<td>3.5×10^{-3}</td>
</tr>
<tr>
<td>$A_s(m^3.J^{-1})$</td>
<td>4×10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>
Multidomain modelling of aDP steel

Dual Phase Modelling results

Magnetic and magnetostrictive behaviour for different volume fractions of martensite

![Graphs showing magnetic and magnetostrictive behaviour](image-url)
Multidomain modelling of aDP steel

Dual Phase modelling : Localization

Application: inverse identification

Local fields convergence

\[\bar{H}_{\text{mean}} = 1.25 \times 10^3 \, A.m^{-1} \]

Localization influence on the behaviour

\[f_m \approx 36\% \]
Multidomain modelling of aDP steel

Dual Phase modelling: Homogenization

Inversion identification: 36% martensitic media

Experimental VS Modelling results

\[f_m \approx 36\% \]
Conclusion

Positive aspects

- Fast estimation of the magneto-mechanical behaviour of a dual phase microstructure.
- Fast convergence.
- Accessible modelling.

Negative aspects

- Overestimation of the magnetostrictive behaviour, due to homogeneous stress hypothesis
- Simplified modelling: low contrast between two isotropic polycrystals.
1. Work supported by French ANR MATETPRO 08 - 322447

