The HOIS recommended practice for the inspection of weld corrosion

WCNDT Durban, SA April 2012

Dr Stephen F Burch,
ESR Technology, Oxfordshire, UK
steve.burch@esrtechnology.com
HOIS Joint Industry Project (JIP)

• HOIS is a well established JIP & forum for improved NDE in the oil and gas industry
 – Focus on upstream applications
• Members comprise:
 – Oil and Gas producers
 – NDT service companies
 – NDT equipment vendors
 – A regulatory authority (UK HSE)
• Managed by ESR Technology
• Now has 39 members
• More information from www.hois2000.com
Introduction

- Preferential attack associated with welds (corrosion or erosion)
 - Is a relatively common issue within the oil and gas industry
 - A number of leaks and other incidents have been caused by this form of degradation

- Need to address lack of well defined inspection methodologies
 - Different approaches and inspection methods in use

- Note: Use term “weld corrosion” to refer to all forms of preferential attack associated with welds
Inspection of weld corrosion

- Inspection is not straightforward because the region of greatest wall loss is usually underneath the weld cap
- Reliable detection and accurate sizing may require combination of more than one different inspection technique
Inputs to HOIS recommended practice

• Many years experience from HOIS members of in-service of weld corrosion
 – Inspection service providers
 – Operators

• Initial evaluation trials to assess sizing capability of different techniques, including
 – Manual angled beam pulse-echo UT
 – Angled beam PA
 – TOFD
 – Tangential computed radiography

• Blind trials of manual UT and advanced/novels techniques
Overview of HOIS weld corrosion RP

- **Scope**
 - Covers detection & sizing of weld corrosion
 - Assumes that weld cap is present
 - Carbon steel only
 - Monitoring not addressed

- **Information on corrosion mechanisms**

- **Provides recommendations on technique selection**

- **Generic procedures for techniques**

- **Comprehensive – 140+ pages**
Inspection issues for weld corrosion (1)

- Attack can be centred on weld or offset
- Variable morphology
 - Broad groove
 - Narrower and sharper associated with weld HAZ
Inspection issues for weld corrosion (2)

• Variable circumferential profile
 – Need to identify min ligament position
Inspection techniques considered

• Main techniques
 – TOFD
 – Tangential radiography
 – Double wall radiography
 – Manual pulse-echo UT
 – Angled beam Phased Array (PA)

• Developmental/advanced techniques
 – Corrosion mapping using 0° stand-off probe scanned over weld cap
 – 0° phased array probes straddling the weld cap
 – Flexible 0° probes
 – SCEXY (build up weld cap with epoxy to give flat surface)
Overall recommendations

• All techniques to be applied by suitably trained and competent personnel

• Two preferred techniques:
 – TOFD, supplemented by 0° pulse-echo scanning on both sides of weld cap
 – Combined double wall/tangential radiography
 • Double wall double image radiography (DWDI) to detect weld corrosion and locate deepest point around weld circumference
 • Tangential radiography with deepest point aligned at the tangent position

• Other techniques to consider if above not appropriate
 – Manual pulse-echo for initial detection. Sizing likely to be of limited accuracy.
 – Double wall radiography (qualitative sizing only)
 – Advanced/developmental techniques

• Beneficial to use more than one technique for confirmation
TOFD for weld corrosion inspection

- Probes straddle weld cap
- Scan probes along weld
- Grey-scale B-scans to show resulting data
- Use information from mode converted signals if available
- Consider scans perpendicular to weld for offset corrosion
- Wall thickness > 6-8 mm
- Min. ligament ≈3 mm
TOFD for weld corrosion inspection (cont)

• Modelling to verify coverage recommended when geometry is more complex than flat plate:

• May need to apply corrections to measured depths:
 – If corrosion is offset from weld centre line
 – If one probe on flange taper or other geometry effects (mis-match)
Supplementary 0° pulse-echo for use with TOFD

- To measure the uncorroded wall thickness on both sides of the weld.
- To detect and measure the remaining ligament for any weld corrosion that is sufficiently offset to emerge from underneath the weld cap
Radiography for weld corrosion

- Film or computed radiography
- Double wall double image radiography (DWDI) as search/location technique
- Follow-up with tangential radiography if found (need to rotate source/detector to align with deepest point on corrosion)
- Provides direct image of corrosion
- Very limited angular coverage of tangential technique
- Restricted to smaller diameter, thinner wall pipes
 - Max tangential path for Ir 192 in range 65mm – 80 mm
Manual pulse-echo UT

- Front-line inspection technique provided by “core crew” onshore/offshore
- Blind trials to assess detection reliability. High reliability on available test specimens for:
 - Combined angled beam from sides of weld cap; small 0° “button” probe to inspect through the weld cap
 - Suitably trained and competent technicians
 - Working to inspection procedures specifically for weld corrosion inspection
- Recognised that sizing accuracy is limited
 - If corrosion found or suspected, need to follow-up with a second technique for confirmation and more accurate sizing
- There may be some geometries & corrosion morphologies for which detection reliability is reduced
Sections on individual inspection techniques

- Each of main techniques covered in a separate section
- Range of applicability (wall thickness, pipe diameter etc)
- Advantages and limitations
- Detailed generic procedure for optimum inspection of weld corrosion
Complete RP contents

1 Introduction 1
2 Scope 2
3 Glossary of definitions, terms and abbreviations 4
4 Weld corrosion 6
5 Weld corrosion inspection techniques 17
6 Time of flight diffraction (TOFD) 25
7 0° pulse-echo for thickness measurement adjacent to the weld cap 44
8 Tangential radiography 49
9 Double wall radiography 67
10 Manual UT 78
11 Angled beam phased array 94
12 Inspection through the weld cap 101
13 Health, safety and environmental considerations. 106
14 Inspection personnel competence 109
15 Application considerations 111
16 Conclusions 112
17 Acknowledgments 114
References 115
Appendices 115
A 1 Summary of members questionnaire at the start of project 117
A 2 Formulae for analysis of TOFD mode-converted signals 121
A 3 Summary table 123
Summary

- A substantive RP has been developed covering the in-service inspection of weld corrosion in carbon steel pipes
- Based on inputs from HOIS members and two sets of trials
- Clear recommendations given for preferred inspection techniques for different component geometries
- Advantages and limitations of each identified
- Available for download from www.hoispublications.com
- Current version to be superseded shortly by Issue 2
Acknowledgements

• HOIS JIP for funding
• Thanks to those companies who have supported this project by participating in the trials:
 – Aker Solutions
 – CAN Offshore Ltd
 – BIS Salamis
 – BV/EM&I Alliance
 – GE Inspection Technologies
 – Mistras Physical Acoustics
 – Olympus NDT
• Project Champion – Malcolm Miller, Shell
 – Useful discussions and guidance
• BP, ConocoPhillips
 – Provision of ex-service specimens
Thank you for your attention

Any questions?