Computed Radiography System Simulation Focusing on the Optical Readout Process

Min YAO
Valérie KAFTANDJIAN
Philippe DUVAUCHELLE
Angéla PETERZOL-PARMENTIER
Andreas SCHUMM
Peter WILLEMS

INSA de Lyon
INSA de Lyon
INSA de Lyon
AREVA
EDF
GE

Juin 22, 2015
Outline

1. Computed radiography principle, advantages and limitations

2. Optical readout simulation
 - Involved phenomena
 - Simulation method
 - Laser spreading inside imaging plate (Monte Carlo tool)
 - Laser scanning (Analytical model)

3. Illustration of different optical effects

4. Conclusion
What is Computed Radiography (CR)?

1. X-Ray Exposure

- X-ray source
- Imaging Plate (IP)
- object
- IP irradiation → Latent image

2. Readout

- Laser
- ADC
- Digitized Signal
- Imaging Plate Moved Translationally

3. Erasure

- Intense Light
Advantages and limitations

• **Advantages**
 + Flexibility of detector
 + Direct digital image
 + Reusability
 + High dynamic range up to 10^5

• **Limitations**
 - Poor efficiency at high energies
 - Poor spatial resolution

 due to the optical readout process
Objective

- **CR imaging chain modeling**

\[\text{Source} \rightarrow \text{X-ray} \rightarrow \text{latent image} \rightarrow \text{Scanner} \rightarrow \text{CR final image} \]
Optical readout simulation: involved phenomena

- **Flying spot scanner**
 Latent image read by a scanning laser

* AAPM Task Group 10 (2006)
Optical readout simulation: involved phenomena

- **Static laser**
 - Photo-stimulation by laser beam
 - Light emission: photo-stimulated luminescence (PSL)
Optical readout simulation: involved phenomena

- **Scanning laser**
 - PSL emission
 - Latent image modification

![Diagram showing optical readout simulation with time steps: t+Δt, t+2Δt, t+3Δt]
Optical readout simulation: method

- Analytical operator using a Monte Carlo optical response model

Latent image $L_{img}(x,y,z)$

Scanning parameters

Optical response model $f(x,y,z)$

H_2

CR final image $D_{img}(x,y)$

$$D_{img}(x_m, y_n) = H_2(L_{img}, f, \text{scanning parameters})$$
Optical readout simulation: method

\[D_{img}(x_m, y_n) = H_2(L_{img}, f, \text{scanning parameters}) \]

\[= \int P(z)dz \int \int_{x,y} L_{img}^{(mod)}(x, y, z) \left[1 - \exp \left(-\sigma \cdot f(x-x_m, y-y_n, z) \cdot P_{laser} \cdot t_{scan} \right) \right] dx dy \]

PSL detection probability

latent image modified by scanning

optical cross section of photostimulation

Scanning parameters

optical response (Monte Carlo)

* Modified from Thoms (1996)
Optical readout simulation: method

- **Monte Carlo tool to obtain the optical response** \(f(x,y,z) \)

 IP is described by

 - Absorption coefficient
 - Scattering coefficient
 - Anisotropic factor:
 - Forward peaked scattering
 - Isotropic
 - ...
 - Boundary conditions

- **Output**

 light intensity function \(f(x,y,z) \)

* Wang et al. (1995)
Fasbender et al. (2003)
Different optical effects illustration: absorption coefficient

- Great absorption coefficient: small scattering region
 - Bad efficiency, good resolution

![Diagram showing absorption coefficient and intensity distribution](image)
Different optical effects illustration: anisotropy factor

- **Forward peaked scattering**: great penetration depth
 - Good efficiency, good resolution

![Diagram of laser scattering](image-url)

\[I(x,y,z) \]
Different optical effects illustration: laser intensity

- **Great intensity: great penetration depth**
 - Good efficiency, bad resolution

![Diagram showing intensity distribution with labels for IP depth (µm), Radius (µm), and laser intensity](image)
Different optical effects illustration: IP thickness

- **Small thickness:** small scattering region
 - Bad efficiency, good resolution
Different optical effects illustration: scanning effect

Example of latent image (reference test object with various holes)

Readout factor = Laser power \times scanning time
Different optical effects illustration: scanning effect

- Influence of readout factor
Conclusion

• Simulation of optical readout process combining analytical and MC tool

 ▪ Interest of the tool
 → study of different optical effects
 – absorption and scattering factors, IP thickness …
 – scanning parameters

 ▪ Modeling of the complete CR system is now available
 → in use at industrial site AREVA and EDF

 ▪ To be done in the future : structural noise of IP
Thank you for your attention!