Wheel Set Axle Inspection Using Advanced Phased Array Approach

T. Heckel, R. Boehm, D. Brackrock, H. Fehlauer, BAM Berlin
W. Spruch, U. Bielau, BTD Brandenburg-Kirchmöser

To gain the performance of ultrasonic wheel set axle inspection the soundfield of the phased array probe, the coupling and the signal processing has to be optimized. Therefore a set up has been developed based on a phased array sensor using immersion technique in combination with an acoustical lens. An automated adaptive time gain compensation has been implemented to improve signal to noise ratio.

Experimental setup with specimen

- Phased array probe using immersion technique, distance to specimen 2 mm

Signal processing using adaptive algorithms

- Probe: 3.5 MHz, 16 elements
- \(\alpha_1 = 60^\circ, \alpha = 10^\circ - 70^\circ, \text{step} = 1^\circ \)

Multiple active scan areas, e.g. \(\alpha_1 = 59^\circ, \alpha_2 = 40^\circ \)

- Probe, 3 MHz, 16 elements, \(\alpha = 10^\circ - 70^\circ \)
- A-Scan
- TD-Scan
- TD-Scan at 59\(^\circ\) transversal wave
- TD-Scan at 40\(^\circ\) transversal wave

Influence of axle geometry on the soundfield

- Soundfield on plain geometry
- Soundfield deformation by curved geometry
- Compensation of the soundfield deformation by acoustical water lens
- Sensitivity benefit by compensation of the surface shape by using an acoustical water lens
 - Example: Sickle shaped test reflector with 2 mm depth, couplant water

Experimental results

- Axial position
 - Result with no signal processing applied
 - Result using soundpath based adaptive TGC algorithms