Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

DGZfP Committee Ultrasonic Testing
Subcommittee Automated UT
Automated Shaft Inspection System
Saarschmiede, Völklingen
Terms

- d_x: Increment in scan direction (Defined by pulse repetition rate and examination speed)
- d_y: Distance between two adjacent laps in index direction
- D_x, D_y: Dimensions of the ultrasonic beam
Automatisierte Disc Inspection System
Schmiedewerke Gröditz
Automated Shaft Inspection System
GE Sensing & Inspection Technologies, Alzenau
Automated Shaft Inspection System
KARL DEUTSCH Prüf- und Messgerätebau GmbH + Co KG, BGH Siegen
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- **Introduction & Motivation**
 - Requirements in Current Standards
 - Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
 - Determination of the Ultrasonic Beam Dimensions
 - Determination of the Examination Grid
 - Summary
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

<table>
<thead>
<tr>
<th>Automated UT</th>
<th>Multiple Scans</th>
<th>Low Sound Attenuation</th>
</tr>
</thead>
</table>
| • Required for heavy rotor forgings
 • Limited optimization regarding flaw reflection
 • Recorded in distinct pattern
 • Full volume coverage required | • Required by VGB-R 504 M | ⇒ Limited pulse repetition rates
 ⇒ Limited inspection speed
 ⇒ High inspection duration |

⇒ Cost of ultrasonic inspection depends directly on examination grid
 (both in scanning and index direction)
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- **Requirements in Current Standards**
 - Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
 - Determination of the Ultrasonic Beam Dimensions
 - Determination of the Examination Grid
- Summary
Requirements in Current Standards
EN 10228-3:1998 - Non-destructive testing of steel forgings

Requirement
- Overlap of at least 10% of the effective active element size
- No requirement in scan direction

Issues for AutoUT
- Apparently assumes a high pulse-repetition-rate and slow probe movement.
- Shape and size of the sound bundle not considered
Requirements in Current Standards
EN 583-1:1998 - Ultrasonic examination - General principles

Requirement
- Based on size of -6 dB beam
- Requirement in scan and index direction
- The beam of two adjacent -6 dB beams have to touch

Issues for AutoUT
- Some zones are not inspected with the required sensitivity
- No formulas provided how to determine an examination grid
Requirements in Current Standards
ASTM E 2375 - 08 - Ultrasonic Testing of Wrought Products

Requirement

• Based on size of -6 dB beam
• Index direction: Overlap of at least 20% of the effective beam width size
• Scan direction: Scanning speed limited by detectability of the reference reflectors

Issues for AutoUT

• Some zones are not inspected with the required sensitivity
• No formulas provided how to determine an examination grid
Requirements in Current Standards Summary

<table>
<thead>
<tr>
<th>Standard</th>
<th>Overlap Requirement</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 10228-3</td>
<td>Overlap of at least 10% of the</td>
<td>• No requirement in scan direction (or only by limitation of scanning speed)</td>
</tr>
<tr>
<td></td>
<td>effective active element size</td>
<td>• Overlap of the beams – however not considering the volume to be inspected</td>
</tr>
<tr>
<td>SEP1923</td>
<td>Overlap of at least 15% of the</td>
<td>• Unclear:</td>
</tr>
<tr>
<td></td>
<td>active element size</td>
<td>• Effective element size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transducer width</td>
</tr>
<tr>
<td>ASTM A 418</td>
<td>Indexing by 75% of the transducer</td>
<td>• Some zones are not inspected with the required sensitivity</td>
</tr>
<tr>
<td></td>
<td>width</td>
<td>• No formulas provided how to determine an examination grid</td>
</tr>
<tr>
<td>EN 583-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIW Handbook</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM E 2375</td>
<td>Overlap of at least 20% of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>effective beam width size</td>
<td></td>
</tr>
</tbody>
</table>
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

Automated UT
- Required for heavy rotor forgings
- Limited optimization regarding flaw reflection
- Recorded in distinct pattern
- Full volume coverage required

Multiple Scans
- Required by VGB-R 504 M

Low Sound Attenuation
- Limited pulse repetition rates
- Limited inspection speed

⇒ High inspection duration

⇒ Cost of ultrasonic inspection depends directly on examination grid (both in scanning and index direction)

Motivation
- Existing standards define examination grids for manual inspection
 ⇒ Not simply transferable to automated
 ⇒ Start of development of an Optimal Examination Grid for the Automated Ultrasonic Inspection
DGZfP Committee Ultrasonic Testing
Subcommittee Automated UT

UT System Manufacturers

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Archinger</td>
<td>GMH Prüftechnik</td>
<td>Nürnberg</td>
</tr>
<tr>
<td>Otto Alfred Barbian</td>
<td></td>
<td>Blieskastel</td>
</tr>
<tr>
<td>Dr. (USA) Wolfram Deutsch</td>
<td>Karl Deutsch</td>
<td>Wuppertal</td>
</tr>
<tr>
<td>Dr. sc. techn. Peter Kreier</td>
<td>Innotest</td>
<td>Eschlikon/CH</td>
</tr>
<tr>
<td>Roland Reimann</td>
<td>AREVA NP</td>
<td>Erlangen</td>
</tr>
<tr>
<td>Udo Schlengermann</td>
<td>NDT Syst. & Services</td>
<td>Erftstadt</td>
</tr>
<tr>
<td>Herbert Willems</td>
<td></td>
<td>Stutensee</td>
</tr>
</tbody>
</table>

Forging Manufacturers (Users)

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kay Drewitz</td>
<td>Schmiedewerke</td>
<td>Gröditz</td>
</tr>
<tr>
<td>Dr.-Ing. Alexander Zimmer</td>
<td>Saarschmiede</td>
<td>Völklingen</td>
</tr>
</tbody>
</table>

OEM

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank W. Bonitz</td>
<td>Westinghouse</td>
<td>Mannheim</td>
</tr>
<tr>
<td>Mathias Böwe</td>
<td>BASF SE</td>
<td>Ludwigshafen</td>
</tr>
<tr>
<td>Klaus Conrad</td>
<td>Siemens AG Energy</td>
<td>Mülheim</td>
</tr>
<tr>
<td>Dr.-Ing. Werner Heinrich</td>
<td>Siemens AG Energy</td>
<td>Berlin</td>
</tr>
<tr>
<td>Dr. Johannes Vrana</td>
<td>Siemens AG Energy</td>
<td>München</td>
</tr>
</tbody>
</table>

Research Institutes

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Gerhard Brekow</td>
<td>BAM</td>
<td>Berlin</td>
</tr>
<tr>
<td>Wolfgang Kappes</td>
<td>Fraunhofer IZFP</td>
<td>Saarbrücken</td>
</tr>
<tr>
<td>Hans Rieder</td>
<td>Fraunhofer ITWM</td>
<td>Kaiserslautern</td>
</tr>
</tbody>
</table>
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- **Definition of an Examination Grid**
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Definition of an Examination Grid Situation

Longitudinal Section

- Longitudinal section through adjacent beams

Horizontal Section

A: Directly at the probe

B: At the end of the near field

C: At 3.5 times near field
Definition of an Examination Grid
Normalized Grid Rating R_n

Definition of R_n

$$\frac{1}{R_n} = \frac{d_x^2}{D_x^2} + \frac{d_y^2}{D_y^2}$$

$R_n = 1 –$ Gapless (at least single sampling)

- d_x: Increment in scan direction
- d_y: Distance between two adjacent laps in index direction
- D_x, D_y: Dimensions of the ultrasonic beam
Definition of an Examination Grid

Normalized Grid Rating \(R_n \)

<table>
<thead>
<tr>
<th>Definition of (R_n)</th>
<th>(R_n = 2) – At least double sampling</th>
</tr>
</thead>
</table>
| \[
\frac{1}{R_n} = \frac{d_x^2}{D_x^2} + \frac{d_y^2}{D_y^2}
\] | |

- \(d_x \): Increment in scan direction
- \(d_y \): Distance between two adjacent laps in index direction
- \(D_x, D_y \): Dimensions of the ultrasonic beam

Diagram:
- \(D_x \)
- \(D_y \)
- \(d_x \)
- \(d_y \)
Definition of an Examination Grid

Normalized Grid Rating \(R_n \)

<table>
<thead>
<tr>
<th>Definition of (R_n)</th>
<th>(R_n = 0.5) – Beams touching</th>
<th>(R_n = 1) – Gapless</th>
</tr>
</thead>
</table>
| \[
\frac{1}{R_n} = \frac{d_x^2}{D_x^2} + \frac{d_y^2}{D_y^2}
\] | ![Image of beams touching](image1.png) | ![Image of gapless](image2.png) |
| \(R_n = 2 \) – Double Sampling | \(R_n = 4 \) – Quadruple Sampling |
| ![Image of double sampling](image3.png) | ![Image of quadruple sampling](image4.png) |

- \(d_x \): Increment in scan direction
- \(d_y \): Distance between two adjacent laps in index direction
- \(D_x, D_y \): Dimensions of the ultrasonic beam

Overlap:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

ECNDT 2014

Dr. Johannes Vrana
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- **Definition of an Examination Grid**
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Definition of an Examination Grid

Average Grid Rating R_d

Definition of R_d

$$R_d = \frac{D_x \cdot D_y \cdot \pi}{4}$$

Example: $R_d = 1$

- d_x: Increment in scan direction
- d_y: Distance between two adjacent laps in index direction
- D_x, D_y: Dimensions of the ultrasonic beam

Area of -6 dB beam

Examintion Grid

Area of ex. grid
Definition of an Examination Grid

Average Grid Rating \(R_d \)

<table>
<thead>
<tr>
<th>Definition of (R_d)</th>
<th>(R_n = 1; R_d \approx 1.81)</th>
<th>(R_n = 1; R_d \approx 1.57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[R_d = \frac{D_x}{d_x} \cdot \frac{D_y}{d_y} \cdot \frac{\pi}{4}]</td>
<td>![Diagram 1]</td>
<td>![Diagram 2]</td>
</tr>
</tbody>
</table>

- \(d_x \): Increment in scan direction
- \(d_y \): Distance between two adjacent laps in index direction
- \(D_x, D_y \): Dimensions of the ultrasonic beam

\(\Rightarrow \) Optimized Examination Grid
Definition of an Examination Grid

Average Grid Rating R_d

Definition of R_d

$$R_d = \frac{D_x}{d_x} \cdot \frac{D_y}{d_y} \cdot \frac{\pi}{4}$$

Optimized Examination Grid

- Optimized examination grid in the case of:
 $$d_x = \frac{D_x}{\sqrt{(2 \cdot R_n)}} \quad \text{and} \quad d_y = \frac{D_y}{\sqrt{(2 \cdot R_n)}}$$

- d_x: Increment in scan direction
- d_y: Distance between two adjacent laps in index direction
- D_x, D_y: Dimensions of the ultrasonic beam

Optimizing the Examination Grid
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Definition of an Examination Grid Situation

Longitudinal Section

• Longitudinal section through adjacent beams

Horizontal Section

A: Directly at the probe

B: At the end of the near field

C: At 3.5 times near field

Grid Rating

\[
\frac{1}{R_n} = \frac{d_x^2}{D_x^2} + \frac{d_y^2}{D_y^2} \\
R_d = \frac{D_x}{d_x} \cdot \frac{D_y}{d_y} \cdot \frac{\pi}{4}
\]
Definition of an Examination Grid
How to calculate the sound bundle – Basic Situation

Normal Straight Beam Probe on a Plane Surface

\[D = 2 \cdot s \cdot \tan(\varphi) \]

Dual Element Probe on a Plane Surface

\[D_x = 2 \cdot FB_6 \quad D_y = 2 \cdot FL_6 \]

- \(d_x \): Increment in scan direction
- \(d_y \): Distance between two adjacent laps in index direction
- \(D_x, D_y \): Dimensions of the ultrasonic beam
- \(s \): Soundpath
- \(FB_6, FL_6 \): Focal Width & Length
Definition of an Examination Grid Situation

Scans

- Different scans required

![Scans Diagram]

radial
radial / axial
axial/radial
axial
radial
radial / tangential
axial / radial
axial / tangential
Definition of an Examination Grid Situation

<table>
<thead>
<tr>
<th>Situation</th>
<th>Plane</th>
<th>Convex</th>
<th>Concave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Element</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition of an Examination Grid
How to calculate the sound bundle

Angle Probe on a Plane Surface

• Probe moved on the surface of the component

• Examination grid d_x an d_y established at the surface

• Beam changes within the part

$D_x' = \frac{2 \cdot s \cdot \cos(\alpha) \cdot \sin(2 \cdot \varphi)}{\cos(2 \cdot \varphi) + \cos(2 \cdot \alpha)}$

⇒ For the calculation of the examination grid the projection of the beam to the surface is necessary
Definition of an Examination Grid
How to calculate the sound bundle

Angle Probe on a Plane Surface

• Probe moved on the surface of the component
• Examination grid d_x an d_y established at the surface
• Beam changes within the part

\[
D'_x = \frac{2 \cdot s \cdot \cos(\alpha) \cdot \sin(2 \cdot \varphi)}{\cos(2 \cdot \varphi) + \cos(2 \cdot \alpha)}
\]

\[
D_y = 2 \cdot s \cdot \tan(\varphi)
\]
Definition of an Examination Grid Situation

<table>
<thead>
<tr>
<th>Situation</th>
<th>Plane</th>
<th>Convex</th>
<th>Concave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Element</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition of an Examination Grid
How to calculate the sound bundle

Normal Straight Beam Probe on Convex Surface

\[D = 2 \cdot s \cdot \tan (\varphi) \quad D_y = 2 \cdot s \cdot \tan (\varphi) \]

\[D_x' = \left(\arcsin \left(\frac{D_1}{D_1 - 2 \cdot s} \cdot \sin(\varphi) \right) \pm \varphi \right) \cdot \frac{\pi}{180^\circ} \cdot D_1 \]

Dual Element Probe on Convex Surface

\[D_x = 2 \cdot FB_6 \quad D_y = 2 \cdot FL_6 \]

Corrected by:

\[D_x' = \frac{D_x \cdot D_1}{|D_1 - 2 \cdot s|} \]
Definition of an Examination Grid
How to calculate the sound bundle

Angle Probe on a Convex Surface

• E.g. from the outer diameter surface D_1

$$D_1' = \left(\arcsin \left(\frac{D_1/2}{r} \cdot \sin(\alpha + \varphi) \right) - \arcsin \left(\frac{D_1/2}{r} \cdot \sin(\alpha - \varphi) \right) \pm 2 \cdot \varphi \right) \cdot \frac{\pi}{180^\circ} \cdot \frac{D_1}{2}$$

with

$$r = \sqrt{s^2 + (D_1/2)^2 - 2 \cdot s \cdot (D_1/2) \cdot \cos(\alpha)}$$

and

$$r \geq \begin{cases} D_1/2 \sin(\alpha + \varphi) & \text{for } \alpha > 0 \\ D_1/2 \sin[\varphi] & \text{for } \alpha = 0 \\ D_1/2 \sin[\alpha - \varphi] & \text{for } \alpha < 0 \end{cases}$$

with

$$D_1'' = \begin{cases} \text{in the case } & s > D_1/2 \cdot \cos(\alpha) \\ \text{in the case } & s \leq D_1/2 \cdot \cos(\alpha) \end{cases}$$

$$D_1' = 2 \cdot s \cdot \tan(\varphi)$$
Definition of an Examination Grid Situation

<table>
<thead>
<tr>
<th>Situation</th>
<th>Plane</th>
<th>Convex</th>
<th>Concave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dual Element</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Angle</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Definition of an Examination Grid
How to calculate the sound bundle

Normal Straight Beam Probe on Concave Surface

\[D_y = 2 \cdot s \cdot \tan(\varphi) \]

\[D_x' = \left(\varphi - \arcsin \left(\frac{D_2}{D_2 - 2 \cdot s} \cdot \sin(\varphi) \right) \right) \cdot \frac{\pi}{180} \cdot D_2 \]

Dual Element Probe on Concave Surface

\[D_x = 2 \cdot FB_6 \]

\[D_y = 2 \cdot FL_6 \]

Corrected by:

\[D_x' = \frac{D_x \cdot D_2}{D_2 + 2 \cdot s} \]
Definition of an Examination Grid
How to calculate the sound bundle

Angle Probe on a Concave Surface

• E.g. from the inner diameter surface D_2

\[
D_s^* = \left(\arcsin \left(\frac{D_2 f^2}{r} \cdot \sin(\alpha + \phi) \right) - \arcsin \left(\frac{D_s f^2}{r} \cdot \sin(\alpha - \phi) \right) + 2 \cdot \phi \right) \cdot \frac{\pi}{180} \cdot \frac{D_2}{2}
\]

with $r = \sqrt{s^2 + (D_s f^2)^2 + 2 \cdot s \cdot (D_s f^2) \cdot \cos(\alpha)}$

\[
D_s = 2 \cdot s \cdot \tan(\phi)
\]
Definition of an Examination Grid Situation

<table>
<thead>
<tr>
<th>Situation</th>
<th>Plane</th>
<th>Convex</th>
<th>Concave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dual Element</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Angle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Determination of the Examination Grid

Necessary Specifications

• For each scan
 • Normalized Grid Rating R_n (gapless recommended)
 • Examination zone
 • Minimum soundpath s_1
 • Maximum soundpath s_2
Determination of the Examination Grid

Necessary Specifications

• For each scan
 • Normalized Grid Rating R_n (gapless recommended)
 • Examination zone
 • Minimum soundpath s_1
 • Maximum soundpath s_2

Determination of Examination Grid

• Calculation of the projection of the sound bundle dimensions both for s_1 and s_2
 • s_1: D_{x1}, D_{y1}
 • s_2: D_{x2}, D_{y2}
• Calculation of the optimized examination grid both for s_1 and s_2 considering the specified normalized examination grid rating R_n
 • s_1: d_{x1}, d_{y1}
 • s_2: d_{x2}, d_{y2}
• Selection of the actually used examination grid d_x and d_y
Determination of the Examination Grid

Determination of Examination Grid

• Calculation of the projection of the sound bundle dimensions both for \(s_1 \) and \(s_2 \)
 • \(s_1 : D_{x_1}, D_{y_1} \)
 • \(s_2 : D_{x_2}, D_{y_2} \)
• Calculation of the optimized examination grid both for \(s_1 \) and \(s_2 \) considering the specified normalized examination grid rating \(R_n \)
 • \(s_1 : d_{x_1}, d_{y_1} \)
 • \(s_2 : d_{x_2}, d_{y_2} \)
• Selection of the actually used examination grid \(d_x \) and \(d_y \)

Check of Examination Grid

• OK if both selected values are not bigger than the calculated values
 • \(d_x \) vs. \(d_{x_1}, d_{x_2} \)
 • \(d_y \) vs. \(d_{y_1}, d_{y_2} \)
• Otherwise needs to be tested by calculating \(R_n \) using \(d_x \) and \(d_y \) for both \(D_{x_1}, D_{y_1} \) and \(D_{x_2}, D_{y_2} \)
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

<table>
<thead>
<tr>
<th>Examination Grid</th>
<th>s₁ (mm)</th>
<th>s₂ (mm)</th>
<th>D'ₓ₁ (mm)</th>
<th>D'ₓ₂ (mm)</th>
<th>Dᵧ₁ (mm)</th>
<th>Dᵧ₂ (mm)</th>
<th>Rₙ</th>
<th>dₓ₁ (mm)</th>
<th>dₓ₂ (mm)</th>
<th>dᵧ₁ (mm)</th>
<th>dᵧ₂ (mm)</th>
<th>dₓ (mm)</th>
<th>dᵧ (mm)</th>
<th>Rₙ₁</th>
<th>Rₙ₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

<table>
<thead>
<tr>
<th>Examination Grid</th>
<th>s_1 (mm)</th>
<th>s_2 (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_{x}) (mm)</th>
<th>(d_{y}) (mm)</th>
<th>(R_n)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x_1}) (mm)</th>
<th>(D'_{x_2}) (mm)</th>
<th>(D_{y_1}) (mm)</th>
<th>(D_{y_2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x_1}) (mm)</th>
<th>(d_{x_2}) (mm)</th>
<th>(d_{y_1}) (mm)</th>
<th>(d_{y_2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
</tbody>
</table>
Determination of the Examination Grid Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>350</td>
<td>1061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm}\]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D_{x1}) (mm)</th>
<th>(D_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>4.5</td>
<td>9</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>12</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>350</td>
<td>1061</td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid Example

Disc

\(D_1 = 1500 \text{ mm}, \; D_2 = 300 \text{ mm}, \; L = 300 \text{ mm} \)

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(D'_{y1}) (mm)</th>
<th>(D'_{y1}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td>2.1</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td>21.3</td>
<td>-</td>
<td>15.5</td>
<td>-</td>
<td>2</td>
<td>9.6</td>
<td>-</td>
<td>7.8</td>
<td>-</td>
<td>9.5</td>
<td>7.5</td>
<td>2.1</td>
<td>-</td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>350</td>
<td>1061</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \ D_2 = 300 \text{ mm}, \ L = 300 \text{ mm} \]

| Examination Grid | Scan | \(s_1 \) (mm) | \(s_2 \) (mm) | \(D_{x1} \) (mm) | \(D_{x2} \) (mm) | \(D_{y1} \) (mm) | \(D_{y2} \) (mm) | \(R_n \) | \(d_{x1} \) (mm) | \(d_{x2} \) (mm) | \(d_{y1} \) (mm) | \(d_{y2} \) (mm) | \(d_x \) (mm) | \(d_y \) (mm) | \(R_{n1} \) | \(R_{n2} \) |
|------------------|------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------|----------------|
| Faces, axial, straight | 100 | 300 | 12.9 | 38.8 | 12.9 | 38.8 | 1 | 9.1 | 27.4 | 9.1 | 27.4 | 9 | 9 | 1.03 | 9.3 |
| Faces, axial/tang., 45° | 100 | 424 | 13.4 | 40.1 | 6.6 | 19.9 | 1 | 9.5 | 40.1 | 4.7 | 19.9 | 9 | 4.5 | 1.09 | 9.8 |
| OD, radial, straight | 120 | 600 | 20.4 | 393 | 15.5 | 77.6 | 1 | 13.1 | 280 | 11.0 | 55 | 13 | 10.5 | 1.05 | 52 |
| OD, radial, straight, dual-element, | 5 | 120 | 5 | 14 | 1 | 3.6 | 9.9 | 3.5 | 10 | 1.02 |
| OD, radial/tang., 14° | 120 | 728 | 21.3 | - | 15.5 | - | 2 | 9.6 | - | 7.8 | - | 9.5 | 7.5 | 2.1 | - |
| OD, radial/tang., 45° | 350 | 1061 | 161 | 141 | 24 | 70 | 1 | | | | | | | | |

\[D_1 = 1500 \text{ mm}, \ D_2 = 300 \text{ mm}, \ L = 300 \text{ mm} \]
Determination of the Examination Grid Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>s_1 (mm)</th>
<th>s_2 (mm)</th>
<th>D'_x1 (mm)</th>
<th>D'_x2 (mm)</th>
<th>D_y1 (mm)</th>
<th>D_y2 (mm)</th>
<th>R_n (mm)</th>
<th>d_x1 (mm)</th>
<th>d_x2 (mm)</th>
<th>d_y1 (mm)</th>
<th>d_y2 (mm)</th>
<th>d_x (mm)</th>
<th>d_y (mm)</th>
<th>R_n1 (mm)</th>
<th>R_n2 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td>21.3</td>
<td>-</td>
<td>15.5</td>
<td>-</td>
<td>2</td>
<td>9.6</td>
<td>-</td>
<td>7.8</td>
<td>-</td>
<td>9.5</td>
<td>7.5</td>
<td>2.1</td>
<td>-</td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>350</td>
<td>1061</td>
<td>161</td>
<td>141</td>
<td>24</td>
<td>70</td>
<td>1</td>
<td>114</td>
<td>100</td>
<td>16.4</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D_{x1}) (mm)</th>
<th>(D_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>1</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td>21.3</td>
<td>-</td>
<td>15.5</td>
<td>-</td>
<td>2</td>
<td>9.6</td>
<td>-</td>
<td>7.8</td>
<td>-</td>
<td>9.5</td>
<td>7.5</td>
<td>2.1</td>
<td>-</td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>350</td>
<td>1061</td>
<td>161</td>
<td>141</td>
<td>24</td>
<td>70</td>
<td>1</td>
<td>114</td>
<td>100</td>
<td>16.4</td>
<td>50</td>
<td>100</td>
<td>17</td>
<td>1.09</td>
<td>1.79</td>
</tr>
</tbody>
</table>
Determination of the Examination Grid Example

Disc

\[D_1 = 1500 \text{ mm}, \ D_2 = 300 \text{ mm}, \ L = 300 \text{ mm}\]

Examination Grid

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D'_{x1}) (mm)</th>
<th>(D'_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
<td>2.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td>21.3</td>
<td>-</td>
<td>15.5</td>
<td>-</td>
<td>9.6</td>
<td>7.8</td>
<td>-</td>
<td>9.5</td>
<td>7.5</td>
<td>2.1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>120</td>
<td>1061</td>
<td></td>
</tr>
</tbody>
</table>
Determination of the Examination Grid

Example

Disc

\[D_1 = 1500 \text{ mm}, \quad D_2 = 300 \text{ mm}, \quad L = 300 \text{ mm} \]

<table>
<thead>
<tr>
<th>Scan</th>
<th>(s_1) (mm)</th>
<th>(s_2) (mm)</th>
<th>(D_{x1}) (mm)</th>
<th>(D_{x2}) (mm)</th>
<th>(D_{y1}) (mm)</th>
<th>(D_{y2}) (mm)</th>
<th>(R_n)</th>
<th>(d_{x1}) (mm)</th>
<th>(d_{x2}) (mm)</th>
<th>(d_{y1}) (mm)</th>
<th>(d_{y2}) (mm)</th>
<th>(d_x) (mm)</th>
<th>(d_y) (mm)</th>
<th>(R_{n1})</th>
<th>(R_{n2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faces, axial, straight</td>
<td>100</td>
<td>300</td>
<td>12.9</td>
<td>38.8</td>
<td>12.9</td>
<td>38.8</td>
<td>1</td>
<td>9.1</td>
<td>27.4</td>
<td>9.1</td>
<td>27.4</td>
<td>9</td>
<td>9</td>
<td>1.03</td>
<td>9.3</td>
</tr>
<tr>
<td>Faces, axial/tang., 45°</td>
<td>100</td>
<td>424</td>
<td>13.4</td>
<td>40.1</td>
<td>6.6</td>
<td>19.9</td>
<td>1</td>
<td>9.5</td>
<td>40.1</td>
<td>4.7</td>
<td>19.9</td>
<td>9</td>
<td>4.5</td>
<td>1.09</td>
<td>9.8</td>
</tr>
<tr>
<td>OD, radial, straight</td>
<td>120</td>
<td>600</td>
<td>20.4</td>
<td>393</td>
<td>15.5</td>
<td>77.6</td>
<td>1</td>
<td>13.1</td>
<td>280</td>
<td>11.0</td>
<td>55</td>
<td>13</td>
<td>10.5</td>
<td>1.05</td>
<td>52</td>
</tr>
<tr>
<td>OD, radial, straight, dual-element,</td>
<td>5</td>
<td>120</td>
<td>5</td>
<td>14</td>
<td>1</td>
<td>3.6</td>
<td>9.9</td>
<td>3.5</td>
<td>10</td>
<td></td>
<td></td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OD, radial/tang., 14°</td>
<td>120</td>
<td>728</td>
<td>21.3</td>
<td>-</td>
<td>15.5</td>
<td>-</td>
<td>2</td>
<td>9.6</td>
<td>-</td>
<td>7.8</td>
<td>-</td>
<td>9.5</td>
<td>7.5</td>
<td>2.1</td>
<td>-</td>
</tr>
<tr>
<td>OD, radial/tang., 45°</td>
<td>120</td>
<td>1061</td>
<td>28</td>
<td>141</td>
<td>10</td>
<td>70</td>
<td>1</td>
<td>19.9</td>
<td>100</td>
<td>7.1</td>
<td>50</td>
<td>20</td>
<td>7</td>
<td>1.0</td>
<td>33</td>
</tr>
</tbody>
</table>
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

- Introduction & Motivation
- Requirements in Current Standards
- Definition of an Examination Grid
 - Normalized Grid Rating R_n
 - Average Grid Rating R_d
- Determination of the Ultrasonic Beam Dimensions
- Determination of the Examination Grid
- Summary
Determination of an Optimal Examination Grid for the Automated Ultrasonic Inspection of Heavy Rotor Forgings

Summary

• Current standards
 • Not sufficient for the determination of an examination grid for automated UT

• New DGZfP Guideline “US 07”
 • Harmonizes the calculation of the examination grid
 • Defines
 • Normalized Grid Rating
 • Average Grid Rating
 • How to calculate the UT beam dimensions
 • Optimizes the inspection speed

• Can be adopted to other applications
Thanks for paying attention to all the formulas.

\[D_x' = \left(\arcsin \left(\frac{D_1}{D_1 - 2 \cdot s} \cdot \sin(\varphi) \right) \pm \varphi \right) \cdot \frac{\pi}{180^\circ} \cdot D_1 \]

\[R_n = \frac{1}{D_x'^2 + D_y'^2} \]

\[D_y' = \frac{D x \cdot D_1}{|D_1 - 2 \cdot s|} \]

\[D_x' = \left(\arcsin \left(\frac{D_1/2}{r} \cdot \sin(\alpha + \varphi) \right) - \arcsin \left(\frac{D_1/2}{r} \cdot \sin(\alpha - \varphi) \right) \right) \cdot \frac{\pi}{180^\circ} \cdot \frac{D_1}{2} \]

with \(r = \sqrt{s^2 + (D_1/2)^2 - 2 \cdot s \cdot (D_1/2) \cdot \cos(\alpha)} \)

and \(r \geq \begin{cases} \frac{D_1}{2} \sin(\alpha + \varphi) & \text{for } \alpha > 0 \\ \frac{D_1}{2} \sin(\alpha - \varphi) & \text{for } \alpha < 0 \\ \frac{D_1}{2} \sin|\alpha| & \text{for } \alpha = 0 \end{cases} \)

with \(D_x' \) in the case \(s > D_1/2 \cdot \cos(\alpha) \)

and \(D_x' \) in the case \(s \leq D_1/2 \cdot \cos(\alpha) \)

\[D' = \frac{2 \cdot s \cdot \cos(\alpha) \cdot \sin(2 \cdot \varphi)}{\cos(2 \cdot \varphi) + \cos(2 \cdot \alpha)} \]

\[R_d = \frac{D x}{d x} \cdot \frac{D y}{d y} \cdot \frac{\pi}{4} \]