EN 16407 Parts 1 and 2: Newly published European standards for the in-service digital and film radiography of pipes

ECNDT, Prague, October 2014

Dr Stephen F Burch, ESR Technology Ltd, Oxfordshire, UK
steve.burch@esrtechnology.com
In-service inspection of pipes

- Flaws of interest generally corrosion & erosion
- Can be internal or external
- Corrosion product often present for external flaws
- External insulation often present

Most widespread application is combination of tangential & double wall double image (DWDI)

- Typically for 3“ (75mm OD) pipes and smaller
- Measure through-wall extent of corrosion

Also double-wall single image radiography for larger pipe diameters

- Flaw detection
- Qualitative estimates of through-wall size
Main radiation sources:

- Usually Iridium 192
- Selenium 75 less frequently
- Very rarely portable X-ray sources

Main types of detectors:

- Conventional radiographic film still used quite widely
- Computed Radiography (CR) based on re-usable imaging plates and laser scanners well established
- Digital Detector Arrays (flat panels): some applications
European standards

EN ISO 17636-1 & -2 cover radiography of new welds

No standards for in-service radiography

- Wide variations in practices adopted by different organisations
- No IQI values specified for in-service inspection
- Variable exposures, source positioning, source selection
- Subjective assessment of image quality

Sensitivity and quality of resulting radiographs and digital images very variable

Quality can be less than for weld radiography, but control/standardisation still important
Introduction to HOIS Joint Industry Project (JIP)

HOIS is a major well established JIP on good practice for NDT/NDE in the oil & gas industry

• 30+ years

Current membership 44

Members comprise:

• Oil and Gas producers - operators
• NDT service companies
• NDT equipment vendors
• Testing & Inspection Companies
• A regulatory authority (UK HSE)

Managed by ESR Technology

Global representation: Americas, UK, Europe, Middle East, Australasia
Early HOIS sponsored blind trial of CR for ISI gave unexpectedly poor results (2003)

Follow-up showed this to be due to limitations in procedures used, not the inherent capabilities of the equipment.

Productive collaboration with CR experts at BAM, Berlin.
 • Professor Uwe Ewert & Dr Uwe Zscherpel

Several practical CR trials to develop and validate the recommended practice

HOIS Recommended Practice
 • Published in January 2010 – available for download from www.hoispublications.com

Now progressed to form basis of new EN standards
New EN standards, published January 2014

Two part standard, covering film and digital radiography (CR/DDA)

- EN 16407-1, Non-destructive testing — Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays — Part 1: Tangential radiographic inspection

- EN 16407-2, Non-destructive testing — Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays — Part 2: Double Wall radiographic inspection

Developed by CEN/TC 138/WG 1

- HOIS RP used as input
BSI Standards Publication

Non-destructive testing — Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays
Part 1: Tangential radiographic inspection

BSI Standards Publication

Non-destructive testing — Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays
Part 2: Double wall radiographic inspection

"making excellence a habit"
For wall loss in-service inspection of pipes only

- Corrosion/erosion flaws
- NOT cracks

Techniques covered:

- Tangential radiography (EN 16407-1)
- Double wall techniques (EN 16407-2)

Two quality classes

- Standard TA, DWA (tangential, double wall)
- Improved TB, DWB

Detectors

- Radiographic film
- Computed radiography (imaging plates, laser scanning)
- Digital detector arrays (DDA)
Tangential techniques

Beam axis through pipe centre line

- Often combined with double wall double image

Beam axis offset
Double wall techniques

Double wall double image (DWDI)
- Often combined with tangential

Double wall single image (DWSI)
Radiation Sources

• Types of source
• Source selection
• Size and strength of sources

Recommended Source to Detector Distances

• DWSI
• DWDI
• Tangential Inspection

Sensitivity/quality measures:

• Single wire IQI values based on experimental measurements (double wall techniques)
• Density of film
• Digital Image quality criteria
 • Basic spatial resolution of detector system (SRb)
 • Normalised Signal-to-noise ratio (SNR_N)
Maximum penetrated thickness w_{max} occurs at tangent position with pipe internal diameter

$W_{\text{max}} \gg$ twice wall thickness

<table>
<thead>
<tr>
<th>Radiation source</th>
<th>Limits on maximum penetrated thickness, w_{max} mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic (for generalised wall loss)</td>
</tr>
<tr>
<td></td>
<td>Improved (for pitting flaws)</td>
</tr>
<tr>
<td>X-ray (100 kV)</td>
<td>≤ 10</td>
</tr>
<tr>
<td></td>
<td>≤ 7</td>
</tr>
<tr>
<td>X-ray (200 kV)</td>
<td>≤ 30</td>
</tr>
<tr>
<td></td>
<td>≤ 20</td>
</tr>
<tr>
<td>X-ray (300 kV)</td>
<td>≤ 40</td>
</tr>
<tr>
<td></td>
<td>≤ 30</td>
</tr>
<tr>
<td>X-ray (400 kV)</td>
<td>≤ 50</td>
</tr>
<tr>
<td></td>
<td>≤ 35</td>
</tr>
<tr>
<td>Se 75</td>
<td>≤ 55</td>
</tr>
<tr>
<td></td>
<td>≤ 40</td>
</tr>
<tr>
<td>Ir 192</td>
<td>≤ 80</td>
</tr>
<tr>
<td></td>
<td>≤ 60</td>
</tr>
<tr>
<td>Co 60</td>
<td>≤ 120</td>
</tr>
<tr>
<td></td>
<td>≤ 85</td>
</tr>
</tbody>
</table>
Key parameter is penetrated thickness of pipe (twice the wall thickness)

Also include any liquid product inside pipe and external insulation

<table>
<thead>
<tr>
<th>Radiation source</th>
<th>Penetrated thickness, w mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>basic technique DWA</td>
</tr>
<tr>
<td>Yb 169</td>
<td>$1 \leq w \leq 15$</td>
</tr>
<tr>
<td>Se 75</td>
<td>$5 \leq w \leq 55$</td>
</tr>
<tr>
<td>Ir 192</td>
<td>$7 \leq w \leq 85$</td>
</tr>
<tr>
<td>Co 60</td>
<td></td>
</tr>
<tr>
<td>X-ray equipment with energy from 1 MeV to 4 MeV</td>
<td>$30 \leq w \leq 200$</td>
</tr>
<tr>
<td>X-ray equipment with energy from 4 MeV to 12 MeV</td>
<td>$w \geq 50$</td>
</tr>
<tr>
<td>X-ray equipment with energy above 12 MeV</td>
<td>$w \geq 80$</td>
</tr>
</tbody>
</table>
Setting the SDD involves a trade-off between image sharpness and exposure time.

For wall-loss applications, image unsharpness can be larger than for weld radiography.

Distances based on geometric unsharpness, U_g, *projected onto the plane of interest*

- Basic technique: $U_g = 0.6 \text{ mm}$
- Improved technique: $U_g = 0.3 \text{ mm}$

For tangential technique, also require

$$SDD \geq PDD + 3,5 \cdot D_e$$

Where PDD is pipe centre to detector distance.
SDD formulae (where practical)

Tangential basic TA

\[SDD \geq \frac{d \cdot PDD}{0.6} \]

Tangential improved TB

\[SDD \geq \frac{d \cdot PDD}{0.3} \]

Double wall basic DWA

\[SDD \geq \frac{d \cdot b}{0.6} \]

Double wall improved DWB

\[SDD \geq \frac{d \cdot b}{0.3} \]
Wire IQIs not appropriate

For film, set limits on optical densities:

- Optical density on the pipe centre line ≥ 1,5.
- Optical density in the un-impeded beam (outside the pipe): 3,5 – 4 (max).
- Optical density in a tangent position of the inner pipe wall ≥ 0,5.

For digital images, use normalised signal to noise ratio SNR_N

- In free beam: $\text{SNR}_N > 70$ (TA), $\text{SNR}_N > 100$ (TB)
Double wall radiography – image quality

Single wire IQI values measured experimentally for limited penetrated thickness ranges

For digital images, use normalised signal to noise ratio SNR_N

- On pipe centre line: $SNR_N > 50$ (TA), $SNR_N > 80$ (TB)

Film density:

- Minimum optical density of 2 (1.5 by agreement between contracting parties)
Techniques for calibration of distances:

- Pipe OD
- External comparators

Techniques for measurement of remaining wall thickness:

- Interactive on-screen (cursor) methods
- Grey level profile methods
 - Interactive
 - Automated
Double wall Radiography EN 16407-2 – Estimation of differences in penetrated thickness

Based on: \[I(w) = I(0) \exp(-\mu w) \]

where

- \(I \) is radiation intensity,
- \(\mu \) is attenuation coefficient,
- \(w \) is penetrated thickness

At best, can only give the difference in penetrated thickness between two measurement positions

Unless care taken, many factors can reduce accuracy of derived values

- Recent blind trial showed no correlation between actual and measured differences in wall thickness
Estimation of differences in penetrated thickness (cont)

Important to:

• Derive attenuation coefficient μ using a step wedge calibration object on each image being analysed
• Measurement and reference areas need to be close together in image
• The underlying image grey level profile between the two measurement positions needs to be assessed and any variations taken into account

Example showing non linear grey level profile: two point measurement method cannot give accurate results
For wall loss flaws, sensitivity is a function of several variables including:

- Flaw depth
- Flaw diameter
- Penetrated thickness
- Radiation source used

CR images of 2mm diameter holes with Ir 192 for penetrated thickness $15 < w < 25$mm showed:

- Small decrease in sensitivity with reduced w
- Standard quality % sensitivity ~ 4% (of total pen. thickness)
- Higher quality % sensitivity ~ 2.5 - 3% (of total pen. thickness)

Sensitivity with Se 75 about 1% better
Validation – repeat blind POD trial

Original CR POD trial in 2003 gave comparatively poor performance

- POD ~ 60%
- Procedure used was not fully developed for the DWDI application

Repeat CR trial on same specimens in 2007 in accordance with HOIS CR recommended practice

- Used DWSI to detect flaws (quicker than DWDI)
- POD ~ 98%

Clear improvement
External corrosion usually covered by scabs formed from corrosion product (rust)

- Prevents direct measurement of wall loss
- Can be dangerous to remove the scab – may cause leaks

Tangential radiography often used on small bore pipework to determine remaining wall thickness

Recent HOIS trials have shown significant under-sizing can occur for some corrosion morphologies. OK on others

Significant safety issue as tangential radiography often used for fitness for service assessment and/or justification for removal of corrosion product

In-service examples of under-sizing reported, including one in which through-wall degradation was not found
There was a notable absence of agreed international standards for in-service radiography (film & CR).

Two part standard EN16407 developed to fill this gap

- Based on extensive experimental trials

EN16407 published in January 2014

Process initiated to submit them by the fast track procedure to ISO.

Consider revisions to include issue with under-sizing of some forms of external corrosion
Acknowledgements

EN16407 developed by CEN/TC 138/WG 1

- Thanks to national experts on this committee
- Committee Chairman and Secretary

The HOIS JIP is thanked for financial support

Members of the HOIS JIP are thanked for useful discussions and feedback during the preparation of the CR recommended practice

The following are thanked for hosting, supply of equipment and participation in the in-service HOIS radiography experimental trials

- Aker Solutions, Oceaneering, NDT Services
- DÜRR NDT, FujiFilm, GE Inspection Technologies
- Malcolm Miller, Shell for leading the second blind trial