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Abstract 

A structural health monitoring strategy based on the control of structural frequency data 
over time, obtained from operational modal analysis, is presented in the present paper. The 
strategy relies on modal estimation based on Stochastic Subspace Identification  and 
clustering methods and, unlike most methodologies found in previous works, it does not 
require the tracking of each structural mode through time. Instead, it relies on extracting 
histograms of frequency data and in quantifying the dissimilarities between sets of these 
histograms, over time. 

The strategy is tested and validated on modal estimates obtained from the monitoring 
system of the suspended 25 de Abril bridge, located in Lisbon, Portugal. The obtained results 
show that the proposed strategy is capable of highlighting small-magnitude changes in a few 
number of mode shapes, while controlling a large range of structural frequencies (and, 
consequently, a large number of structural modes). When applied to smaller frequency 
subranges, the strategy proves capable of identifying the frequency values more susceptible 
to the damage being observed, thus contributing for the localization and magnitude 
assessment of the changes monitored on site.  

1 INTRODUCTION 

Structural health monitoring (SHM) can be defined as the process of developing and 
implementing techniques capable of identifying damage in structures using sensing systems 
[1], [2]. Ideally, these systems and techniques should operate continuously and automatically, 
and be capable of providing, without false detections and in real-time, information that can be 
directly related to the structural condition [2]. 

In this context, operational modal analysis (OMA) has become one of the most used and 
important approaches since it allows obtaining, in real-time, information that is directly 
related with the stiffness of structural systems, which is assumed to vary when these 
experience changes [2], [3]. 

Strategies for identifying structural changes based on OMA have recently been the subject 
of numerous research works [3]–[7] and are generally composed of two distinct steps: modal 
estimation and modal tracking. Modal estimation is nowadays conducted using time domain 
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methods, from which the most used is the stochastic subspace identification (SSI) [3], [5], [7] 
which assumes that structural systems are excited by random-like actions and allows 
obtaining accurate estimates of modal quantities. More recent works describe the association 
of the SSI with clustering analysis [4], [6], [8] with the objective of increasing accuracy and 
separating structural mode shapes from spurious ones related to noise and other external 
factors. Modal tracking consists of associating each of the estimated structural modes with 
those obtained in the past, so as to control the structural response and detect changes. This 
task is generally conducted using predetermined baseline sets of modal quantities, obtained a 
priori in a non-automated manner, to which new estimates are compared and allocated based 
on their values of frequency, MAC (modal assurance criterion) and damping [3], [4], [6], [8]. 

While modal SSI estimates can be accurately and automatically obtained from the 
ensemble of SSI and clustering, their automatic association with the different natural mode 
shapes can be difficult to carry out on: (i) large flexible structural systems composed of 
numerous natural mode shapes with identical frequency values, (ii) structural systems excited 
by non-random loadings of different natures and when (iii) the number of natural mode 
shapes to be estimated and controlled over time is larger than the number of sensors installed 
on site. 

The present work addresses these difficulties and presents a SHM strategy that allows 
controlling modal quantities over time without the need to conduct modal tracking, i.e., 
without the need to compare modal estimates and to allocate observed structural modes to 
those present in a previously established baseline. Instead, it relies on SSI and clustering to 
estimate the frequencies of natural modal shapes and on calculating symbolic metrics 
between these, over time. The testing and validation of the proposed strategy is conducted 
using data permanently acquired from a long-span multi-modal suspended bridge. 

Following this introduction, the case study is presented, after which a brief description of 
the adopted modal estimation procedure is given. Then, the strategy for controlling modal 
quantities over time is presented and tested using a simulated scenario of a structural change. 
Finally, the main conclusions are drawn from the presented work.  

 

2 CASE STUDY 

The case study used in the present paper is the suspended 25 de Abril bridge, located in 
Lisbon, Portugal. The bridge has a total length of 2177m, with a 1013m long main span, two 
483m lateral spans and two 190m high pylons (Figure 1a). The bridge deck (see Figure 1b) 
consists of a steel truss carrying 6 roadway lanes and two railway lines (Figure. 1b). The 
bridge suspension system is composed of 4 suspension cables and 1344 vertical hangers 
suspending 168 transversal steel trusses  connected by four main longitudinal beams that 
span the entire length of the structural system. 

The structural health monitoring system installed on the 25 de Abril bridge acquires data 
from 200 sensors at a rate of 500 samples/second. This leads to a total of 8.6x109 values per 
day. This rate was chosen to take advantage of the hardware’s analog low pass filters. Data is 
then digitally filtered to a value of 20Hz and only 50 samples per second, per sensor, are kept 
for analysis, thus leading to a total of 8.6x108 values processed each day. The need to have 
such a large set of data is imposed by the need to characterize and quantify fast effects 
induced by traffic and by the need to conduct OMA. 

For the present case study, fifteen accelerometers installed on five cross-sections across 
the bridge deck are considered. The cross-sections coincide with the suspended transversal 
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trusses (Figure 1a) named as 0, 22S (“S” stands for South, with reference to the center of the 
main span), 66S, 22N (“N” stands for North) and 66N and their locations were chosen as the 
center and quarters of the main span and as the center of the lateral suspended spans.  

(a)

(b) (c)

 
Figure 1: The 25 de Abril bridge, (a) side view, (b) cross-section with installed accelerometers and (c) 

accelerations considered for modal analysis. 

The accelerometers were installed, in each section, on the top of the upper longitudinal 
beams. Two of them were installed to acquire vertical acceleration (a2v and a3v in Figure 1b) 
while the third one (a1h) is acquiring horizontal acceleration perpendicular to the deck’s axis 
(as shown in Figure 1b). Based on the accelerometers installed in each section, three 
structural global acceleration components are calculated and considered in modal analysis. 
These consist of the horizontal (ah), vertical (av) and rotation (ar) accelerations (Figure 1c), 
calculated as follows: 

haah 1  (1) 
  232 vavaav   (2) 

  232 vavaar   (3) 

Modal quantities are obtained hourly from time-series with a length equal to the same time 
interval, thus comprising 1.8 x105 values, per accelerometer. The frequency content of these 
series, for accelerations acquired in the center of the main span during one hour of data 
acquisition, is shown in Figure 2. 

3 MODAL ESTIMATION 

3.1 Stochastic subspace identification 

Operational modal analysis generally relies on time based methods such as the SSI, either 
in its DATA or COV version, or as the p-LSCF, instead of frequency based methods such as 
the several variants of the FDD (frequency domain decomposition). Detailed description of 
these can be found in [3], [8]. In the present paper, the most commonly used SSI-COV is 
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used, which is based on the classical discrete state-space model describing a linear N-DOF 
(degree of freedom) time invariant systems under white noise excitation: 

kkk wAxx 1 , (4) 

kkk vCxy  , (5) 

where k identifies the sampling instant, A (nxn, n=2N) is the state matrix, C (rxn) is the 
output matrix, built using r measured signals, xk is the state vector, yk the measurements 
vector, while wk and vk are independent zero mean stochastic processes which represent 
unknown effects, noise, etc. Given these equations and assumptions, it can be shown that the 
modal quantities can be obtained using only the structural responses by considering that their 
covariance matrix describes the free dynamic behavior of the monitored structural system [4], 
[8], [9]. 

 
Figure 2: Spectra of the acceleration series acquired during one hour in the center of the main suspended span. 

In practical terms, the SSI-COV relies on building a block Hankel matrix (H) from the 
signals’ covariance matrices, calculated at each time instant k. Afterwards, the observability 
matrix (O) is obtained by extracting the singular values of H. By solving a linear 
least-squares problem on a subset of O, an estimate of the state matrix A is obtained. Its 
eigenvalues are associated with the modal frequencies and damping ratios, while its 
eigenvectors consist of the structural mode shapes [7]–[9]. The method requires the input of a 
model order to allow estimating the state matrix A, whose optimal value is not know in 
advance, even if it can be estimated with more or less accuracy [3]. As a result, the practical 
approach for OMA based on SSI-COV is to consider a wide range of model orders, most of 
which are larger than the number of mode shapes considered in the analyzed frequency 
range, and to plot eigen frequencies Vs. model orders (this plot is also named stabilization 
diagram). In this type of plot, the physical mode shapes are shown as vertical lines, in which 
eigen frequencies repeat themselves across numerous model orders, while spurious modes 
associated with noise and other effects, do not [3]. 

The procedure described in the previous paragraph was applied to the data acquired on the 
25 de Abril bridge, at each hour, in the frequency range of 0-4Hz and up to order 50. For 
greater accuracy, the frequency range was divided into subranges of 0.5Hz, thus leading to 
eight SSI-COV analyses per hour, generating stabilization diagrams as the one shown in 
Figure 3, where it can be observed that numerous poles (modes in stabilization diagram) are 
vertically aligned while others are not. The first set is expected to be related with structural 
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modes while the others are supposed to be spurious. To distinguish these two sets, the 
following validation constraints were imposed to the poles obtained in each stabilization 
diagram: 

1. Damping ratios must consist of values between 0% and 10%. 
2. Each pole’s frequency must have a difference of less than 1% with at least 10 other 

poles’ frequencies found in the same stabilization diagram. 
3. Each pole’s mode shape must exhibit a MAC larger than 99% with those of 10 

other mode shapes. 
After imposing the three validation constraints, the stabilization diagram shown in Figure 

3 allowed obtaining the stabilization diagram shown in red color, Figure 4. 
 

 
Figure 3: Stabilization diagram obtained from 15 time-series of accelerations acquired on the 25 de Abril bridge. 

3.2 Automatic mode shape selection using clustering methods 

The challenge of extracting the structural modes observed in situ, from the stabilization 
diagrams obtained from the SSI-COV is tackled herein as in other recent works [3], [4], [6] 
by using clustering methods. These consist of unsupervised statistical learning algorithms 
capable of allocating poles as belonging to specific structural modes (clusters of poles) such 
that those allocated to each structural mode are more similar to one another than to those 
assigned to different ones. The aim of a clustering method can be mathematically posed as 
[10] the attempt to minimize the dissimilarity between poles assigned to the same structural 
mode (within-cluster dissimilarity) and, consequently, maximize the dissimilarity between 
poles assigned to different structural modes (between-cluster dissimilarity). 

The most well-known clustering methods are the iterative and the hierarchical ones [10]. 
The first type addresses the problem of finding the structural modes iteratively, while the 
second fulfills the same objective by creating an hierarchy in which more similar poles are 
merge before more dissimilar ones. This second type of clustering methods was used herein, 
with the Ward merging criterion [10], for estimating the structural modes in each stabilization 
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diagram extracted from the 25 de Abril data. The dissimilarity used as input in this method is 
the one found in other OMA works [3], [4], and it depends on frequency, damping and mode 
shapes, as follows: 
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where i and j are two poles of the stabilization diagram, fi is the eigen frequency of pole i, di 
its damping ration and i the vector of its mode shape coordinates. 

As for the SSI-COV, one cluster analysis was performed on each 0.5Hz range, thus 
leading to a total of 8 cluster analysis on each stabilization diagram. The number of structural 
modes (clusters) considered in each of these analyses was purposely fixed over time, and 
chosen as equal to the number of sensors installed on site, i.e., 15, thus leading to a total of 
120 structural modes estimated in the range 0-4Hz, at each hour. This number is higher than 
the true number of structural modes, which is approximately 65 for this frequency range. 
However, as it will be seen in the next section, if modal tracking is not required, the accurate 
estimation of this number is not needed for health monitoring based on OMA. The 120 
modes obtained from cluster analysis are shown in Figure 4 as dashed black colored vertical 
lines. 

 
Figure 4: Stabilization diagram obtained from 15 time-series of accelerations acquired on the 25 de Abril bridge 

and after imposing the validation criteria (red crosses) along with the output obtained from cluster analysis, 
represented as black dashed vertical lines. 

For the present paper, the procedure described so far, consisting of SSI-COV followed by 
cluster analysis, was repeated for each hour of data acquisition in the 25 de Abril bridge, for a 
period of eleven months, from December 2014 to November 2015. The corresponding set of 
eigen frequencies obtained is shown in Figure 5, where those associated with structural 
modes can be easily observed as denser horizontal bands.  
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Figure 5: Eigen frequencies obtained using SSI-COV and clustering between Dec. 2014 and Nov. 2015. 

3 CONTROL OF MODAL QUANTITIES OVER TIME 

The SHM strategy proposed relies on controlling frequency values without the need to 
track specific structural modes through time. Instead, the strategy relies on computing 
symbolic dissimilarities between the mode’s frequencies (estimated using the strategy 
proposed in the previous section) and in statistically testing these dissimilarities’ values. 
Symbolic dissimilarities consist of distance metrics between data objects described by one or 
more statistical quantities, from which interquartile ranges and histograms are the most used 
[2], [11], [12]. In the present paper, choice was made to use histograms to quantify the 
dissimilarity of all frequencies estimated over a pre specified range, at each hour, in the 25 de 
Abril bridge. Considering an histogram with k classes describing all frequencies estimated 
during time period u (fu1,…,fuk), and an identical one for time period v (fv1,…,fvk), the 
dissimilarity, Duv, between these two objects describing the frequencies in a considered range 
is equal to the standardized categorical distance, defined as follows [11], [12]: 
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where nuj and nvj are the number of structural mode frequencies estimated in the class j, 
during periods u and v, respectively. The number of histogram classes, k, as well as their 
width must be chosen a priori according to the target application, and kept unchanged during 
the entire analysed period. 

For the the 25 de Abril bridge case study, histograms with 200 classes of 0.02Hz each 
were hourly built using the frequencies of the preceeding 14 days. From these, the categrocial 
distance between each histogram and the first one was calculated and it is displayed in black 
color in Figure 6. Since these histograms comprise the entire frequency range acquired in 
situ, this single time-series of categorical distances shown in the figure consists of an 
indicator describing all the frequency content shown in Figure 5.  
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Figure 6: Categorical distance obtained from histograms computed with a range of 0 to 4Hz, and 200 classes 

with a range of 0.02Hz each. 

Along with the categorical distance shown in black color, in Figure 6, an additional one is 
shown in blue color. This was obtained using the same strategy and histogram parameters, 
but from a set of frequencies which was previously changed so as to simulate a 
small-magnitude damage occurrence. This simulation consisted in decreasing by 1% the 
values of frequency estimates (show in Figure 5) known to correspond to local mode shapes 
in section 66S, i.e, to modes exhibiting high values of modal displacements in section 66S 
(see Figure 1) while having the remaining ones null (or near null). Among the 65 structural 
modes identified in the frequency range 0-4Hz, only six were found to have local character in 
section 66S and their average frequencies are approximately of 1.2, 2.2, 2.7, 2.9, 3.7 and 
3.9Hz. As it can be observed, in the blue plot shown in Figure 6, the categorical distance 
obtained from the entire frequency 0-4Hz range appears to be highly representative of the 
structural behavior, since it represents the variations of a large number of structural modes. 
However, it is also highly sensitive to changes, since a 1% change in a small number of mode 
frequencies generated the important variation in the distance’s magnitude, shown in Figure 6. 

The dashed red colored line shown in the same figure consists of a 99% confidence limit 
obtained using only the distances computed before  the 1st of September, date in which the 
damage was simulated, and assuming that changes in the quantity follow a Normal 
distribution. As it can be observed in Figure 6, the black line does not exceed this limit, while 
the blue line clearly overpasses it after the damage simulation. 

The time-series of categorical distances obtained from histograms describing the entire 
frequency range acquired on site allow generating a single-valued indicator with high 
representativeness and sensitivity to detect structural changes. If, however, there is the need 
to know which frequency band is the most affected by an observed change, not only for 
anomaly localization based on the modal displacements, but also for quantifying the 
magnitude of damage1, several categorical distances can be computed from histograms 
representing frequency subranges. For the case study considered, the frequency range 0-4Hz 
was divided into 20 subranges of 0.2Hz, each with ten categories of 0.02Hz. The 
corresponding categorical distances along with their confidence limits are shown in Figure 7, 
where it can be observed that in five of the twenty categorical distance’s series the 
confidence limit is clearly exceeded. A simple assessment of the most important modal 

                                                 
1 Based on the premise that lower frequency mode shapes are affected by more important damage. 
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displacements present in these frequency ranges would provide an estimate of the anomalies’ 
locations, while the fact that the smaller frequency ranges are unaffected by the simulated 
change suggests that it is not of significant magnitude. 

 
Figure 7: Categorical distances obtained from histograms computed with a range of 0 to 4Hz, and 200 classes 

with a range of 0.02Hz each. 

4 CONCLUSIONS 

The present work presents and describes an SHM strategy based on operational modal 
analysis that requires the estimation of modal quantities such as frequencies, but which 
avoids the need to control these quantities for each structural mode, over time. It consists in 
using the time-domain method SSI-COV associated with clustering methods to obtain modal 
estimates, and in extracting the corresponding histograms, whose dissimilarity over time is 
quantified by calculating symbolic categorical distances. 
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The strategy was tested and validated on modal estimates obtained from the monitoring 
system of the suspended 25 de Abril bridge, located in Lisbon, Portugal, and allowed 
concluding that the categorical distance obtained from modal frequencies is capable of 
describing the variations observed in a large number of structural modes, while being 
sensitive to highlight small changes observed in only a few. 

The categorical distance was obtained not only for the entire frequency range under 
analysis, but also for subranges and allowed concluding that, without loss of sensitivity, it is 
possible to identify the frequency ranges most affected by a given structural change, without 
the need to track any specific mode shapes, thus providing a straightforward and precise way 
of localizing and quantifying the magnitude of structural changes. 
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