FE Modelling of a Pulsed Eddy Current Probe for Inspection of Steam Generator Tubes in CANDU® Reactors

Sarah Mokros¹,²
V. K. Babbar¹,³, J. Morelli², P.R. Underhill¹, J. Buck¹,², T.W. Krause¹

1. Department of Physics, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4
2. Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON, Canada, K7L 3N6
3. Chalk River Laboratories, AECL, Chalk River, Ontario, Canada, KOJ 1JO
Agenda

• Introduction
• Pulsed Eddy Current Technology
• Analytical Model
• Finite Element (FE) Model
• Experimental Validation
• Current Work
• Conclusions
Introduction

• Steam Generators are a critical component of nuclear power plants
• Inspection of thousands of tubes required
• Support structures are designed to prevent excessive vibration of tubes
Introduction

• Corrosion can occur in support structures
• Loss of support can result in excessive tube vibration
 – Leads to tube fretting
• Other issues associated with build-up of corrosion products including
 – Hydrodynamic cavitation
 – Intergranular attack & tube OD cracking
Introduction

Hydrodynamic Cavitation

Yao, Z. Holt, R. Steam Generator Design and Degradation Mechanisms [PowerPoint Slides].
Introduction

Corrosion

SG Tubes

Broach Support

Degraded Tube Sheets

5th International CANDU In-Service Inspection Workshop 2014 Conference
Broach Support Corrosion
Eddy Current Technology

- Current inspection methods use conventional eddy current technology
- Bobbin probe, X-probe
- Not as effective for inspection of external support structures
Pulsed Eddy Current Technology

• PEC uses a square pulse excitation
• Near DC magnetization of ferromagnetic materials
• Greater depth of penetration than conventional eddy current
• Sensitive at greater lift-offs than conventional eddy current
Pulsed Eddy Current Technology

• PEC takes advantage of the long diffusion time of electrodynamic fields

\[\tau \sim \mu \sigma l^2 \quad \rightarrow \quad \delta \approx \sqrt{\frac{\tau}{\mu \sigma}} \]

• \(\mu \) is the permeability
• \(\sigma \) is the conductivity
• \(l \) is the characteristic length
• \(\delta \) is the depth of penetration
Probe Design

- Pick-up Coil
- Drive Coil
Analytical Model

- Probe can be simplified and modeled as a circuit
- Simplified circuit showing drive coil which has resistance and inductance
Analytical Model

- Circuit can be solved to find current

\[i_1 = \frac{v_0}{R_1} \left[1 - e^{-t/\tau} \right] \]

\[\tau = \frac{L_1}{R_1} \]
Analytical Model

• From solved circuit, modifying R_1 and L_1 will change shape of the excitation
• Using different inductances, rise time of the drive coil can be increased
• Inductance can be modified by the addition of a ferrite core
Analytical Model

- Three different sizes of Ferrite core
- Ferrite permeability = 2300 [H/m]
- Ferrite resistivity = \(2 \times 10^8\) [\(\mu\Omega \cdot \text{cm}\)]
- Copper resistivity = 1.72 [\(\mu\Omega \cdot \text{cm}\)]

<table>
<thead>
<tr>
<th>Core</th>
<th>Outer Diameter [mm]</th>
<th>Length [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>
Analytical Model

Current [A] vs. Time [ms] for different core sizes:

- Air Core
- 5 mm OD
- 4 mm OD
- 3 mm OD

Legend:
- Blue: Air
- Red: Core 5 mm OD
- Green: Core 4 mm OD
- Purple: Core 3 mm OD

Graph showing the impact of core size on current over time for an analytical model.
FE Model

- Modelled in COMSOL Multiphysics
- 2D half model created to simplify computations and decrease computation time
- Axis showing distance in mm
FE Model (Mirrored)

- SG Tube
- Drive Coil
- Ferrite Core
FE Model

• From the COMSOL model, it was found that the length of the ferrite core could be reduced and still provide the same flux density at the pick-up coil locations
FE Model

Current [A] vs. Time [ms]

- Air Core
- 5 mm OD
- 4 mm OD
- 3 mm OD

Core 1
Core 2
Core 3
Comparison of analytical response and FE response in excellent agreement.
• Experimental response of single coil with three different cores in Alloy-800 tube
FE Model

- Experimental setup has an internal resistance
- Resistance shown in circuit as R_{cir}
- $R_{cir} = 2.3 \, \Omega$
- This additional resistance can be added to the FE model
Comparison of Models with Experiment

Air Core

- Comparing cases with air core
- Shows excellent agreement
Comparison of Models with Experiment
3 mm OD Ferrite Core

- Comparing cases with ferrite cores
- Excellent agreement between FE and Experiment
Comparison of FE Model with Experiment

- Inductance of coil with different ferrite cores
- Measured and FE are in good agreement

<table>
<thead>
<tr>
<th>Core</th>
<th>Measured L1 [μH]</th>
<th>FE L1 [μH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Core</td>
<td>232</td>
<td>233</td>
</tr>
<tr>
<td>1</td>
<td>769</td>
<td>768</td>
</tr>
<tr>
<td>2</td>
<td>634</td>
<td>627</td>
</tr>
<tr>
<td>3</td>
<td>498</td>
<td>500</td>
</tr>
</tbody>
</table>
FE Model

FE modelled response from pick-up coil

![Graph showing current vs. time for different core sizes with LOI marked]

- Air
- Core 5 mm OD
- Core 4 mm OD
- Core 3 mm OD
Comparison of FE Model with Experiment

• Frequency analysis can be conducted to examine effect of frequency on inductance
• Using tubes with comparable dimensions
• Two materials were examined:
 – Alloy-800 (resistivity 107 [µΩ·cm])
 – Aluminum (resistivity 4.0 [µΩ·cm])
Comparison of FE Model with Experiment

![Graph showing inductance vs. frequency for different materials and conditions.](image)

- No Tube
- Alloy-800 Measured
- Aluminum Measured
- Alloy-800
- Aluminum

Probe Equivalent Frequency
Current Work

- Optimizing probe design
- Modifying current probe from 4 coils to 6 coils
- Designed to inspect trefoil broach support structures more effectively (120° separation)
- Examining pick-up coil response with ferrite core present
FE Model

Pick-up Coil
Drive Coil
FE Model

- Sample broach support structures were built
- One trefoil hole
- Trefoil hole array
- The broach support was simulated using COMSOL
Finite Element Model

Tube

Trefoil hole
Finite Element Model

- Flaws were added to broach support to determine if detection is possible
- A tapered flaw was generated on the top surface of the support structure
Finite Element Model of Corroded Trefoil

Tube
Trefoil hole

Trefoil hole array
Corroded Trefoil hole

5TH INTERNATIONAL CANDU IN-SERVICE INSPECTION WORKSHOP

NDT IN CANADA 2014 CONFERENCE
Finite Element Model Results

The graph shows the current [mA] as a function of time [ms] for different conditions:
- **Flaw**
- **No Flaw**

The inset graph provides a closer view of the current and time for both conditions, highlighting the differences.

- **Current [mA]**
 - Flaw: 4.5, 5, 5.5, 6
 - No Flaw: 4.5, 5, 5.5, 6

- **Time [ms]**
 - Flaw: 0.008, 0.028, 0.048
 - No Flaw: 0.008, 0.028, 0.048
Conclusions

• Addition of ferrite core will increase rise time and total flux permitting greater depth of penetration and larger signal response
• COMSOL and experimental values were found to be in excellent agreement
• Further validation of probe is required
• Continued optimization of 6 coil probe to be used for inspection of broach support structures
Questions?