where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

Canadian Institute for NDE
We are specialized in training for Radiography, Ultrasonics, Magnetic Particle, Liquid Penetrant, Eddy Current and emerging NDT technologies.
497 views
Technical Discussions
George Peczely
George Peczely
01:32 Feb-13-2001
ndt material testing in power plants

Hi,

I would like to get some help. Ihave to write a 10-15 pages long study about ndt material testing in power plants. Could you send or offer me a short paper about it?

Thanks in advance: George


 
 Reply 
 
William B. Streett
William B. Streett
03:19 Feb-12-1998
Re: impact-echo
: Recently I read a new paper by Sansalone, Lin and Streett
: in the ACI Materials Journal Nov-Dec 97 where 'a procedure
: for determining p-wave speed in concrete ...' is decribed.
: At one point, a difference between the p-wave speed, and
: a so-called "impact-echo p-wave speed" of about 4 % is
: mentioned and a recent paper of Lin and Sansalone is
: cited for explanation. Since this paper is not available,
: I re-read a paper of 86 by Carino, Sansalone and Hsu (flaw
: detection in concrete ...) where they find a difference
: of about 10 % between the two velocities, but cannot
: find an explanation for that.

: My question is, what is the reason for this phenomenon,
: what is the physical effect standing behind this differnce?
: Who can give an explanation?

Mr. Weiler has asked about confusing statements in the impact-echo
literature about the 4% difference between the true P-wave speed in
concrete and what is sometimes called the 'apparent P-wave speed in a plate'.

If one considers multiple P-wave reflections in a simple plate, the
expected relationship between the wave speed Cp, the thickness T and the
frequency f is: f = Cp/(2 T). This is a simple statement that the period
of wave reflections is twice the thickness divided by the wave speed. In
the early work on impact-echo it was assumed that this relationship
explains the impact-echo response of a plate structure. However, in
studies of the time-domain waveforms from early impact-echo tests, it was
observed that successive P-wave arrivals were slightly delayed, and as a
result the frequency of multiple reflections is slightly lower than that
calculated by the equation above.

It was not until after extensive computer simulations of stress wave
propagation and reflection in a variety of geometric shapes were carried
that the developers of impact-echo realized that multiple P-wave
reflections excite certain transient modes of vibration, and that the
correct relation between the wave speed, the frequency of the first mode,
and a characteristic dimension A is f = bCp/(2A), where b is a "shape
factor". For plates the mode of vibration is a thickness mode, the
characteristic dimension is the thickness T, and the shape factor b = 0.96.
The frequency of the first mode of thickness vibration in a plate is 4%
lower than the frequency of multiple P-wave reflections predicted by the
simple equation f = Cp/(2T).

The values of b for different geometric shapes have been calculated from
computer simulations using a 3-D, dynamic, finite element simulation
method, and they have been verified by repeated tests both in the
laboratory and in the field. (The finite element codes used in the
simulations are the DYNA3D and related programs developed at the Lawrence
Livermore Laboratories in California by G. Goudreau, J. Hallquist and
others.) For more information see references [39, 40, 41] in
http://www.ndt.net/article/0298/streett/refer.htm
See also Chapters 4, 21 and 22 of the book by Sansalone and Streett:
http://www.impact-echo.com/Impact-Echo/bullbrie.htm

If one measures the P-wave speed using two transducers on the surface of a
concrete structure, the true P-wave speed, Cp, is obtained. If one observes
the thickness frequency of a solid plate of thickness T, and calculates the
wave speed from the simple equation Cp = 2fT, the result is what we now
call "the apparent P-wave speed in a plate". It is equal to 0.96 times the
true P-wave speed.

In impact-echo tests on beams and columns, the same equation f = bCp/(2A)
applies. In this case A is a characteristic cross-sectional dimension, and
the value of b depends on the cross-sectional shape. For circular columns,
for example, A is the diameter and b = 0.92. For a square column, A is the
length of the square, and b = 0.87. For a rectangular column, A is the
dimension in the direction of the impact, and the value of b is a function
of the aspect ratioof the cross section, and its value ranges from about
0.75 to 0.96. The latter value is the limiting value as the shape
approaches that of a plate (lateral dimensions at least 5 times the
thickness).

There is indeed some confusion on this matter in the published papers on
impact-echo, because it was not fully understood until after the early
papers were published. In addition to the explanation in the book on
impact-echo, an explanation can be found in a recent paper by M. J.
Sansalone, entitled, 'Impact-Echo: The Complete Story', in the
November/December 1997 issue of the ACI Structural Journal, pp. 777-786.

Prof./Dr. William B. Streett
Cornell University
Ithaca, NY
12 February 1998



 
 Reply 
 
David Hirsch
David Hirsch
08:09 Feb-15-2001
Re: ndt material testing in power plants
Hi,

Sounds like you want someone else to do your schoolwork for you, Perhaps you should try the search engine.

DH


: Hi,
.
: I would like to get some help. Ihave to write a 10-15 pages long study about ndt material testing in power plants. Could you send or offer me a short paper about it?
.
: Thanks in advance: George



 
 Reply 
 

Product Spotlight

AIS229 - Multipurpose Real Time System

Latest standard & automatic real time system developed by Balteau. The AIS229 has been designed to
...
do series inspection in a wide variety of industry. Composed of a shielded cabinet, 5 axis manipulator, x-ray generator and tubehead from 160kV to 225kV, a fl at panel & much more, the AIS229 is most certainly one of the most multipurpose RTR system available on the market.
>

Robotic laser shearography enables 100% inspection of complex, flight-critical composite structures

An article in “Composites World Magazine” showcases Non Destructive Testing of aero-structures
...
with Laser Shearography. Over the years Dantec Dynamics has supplied many solutions for the aerospace industry. Referring to specific customer projects several of these cases are examined to outline the advantages of using Laser Shearography for automated defect detection.
>

ISAFE3 Intrinsically Safe Sensor System

ISAFE3 intrinsically safe sensor system of Vallen Systeme is especially targeted at the petrochemica
...
l - as well as oil and gas transportation industry. The sensor system is designed for permanent monitoring or periodic inspection tasks. Sensors are available for different AE-frequency ranges optimized for corrosion and fatigue crack detection and other applications. The ISAFE 3 sensor system consists of an AE-sensor (model ISAS3) certified according to ATEX/IEC for installation in zone 0, gas group IIC, IP68, 20 to +60 °C, and a signal isolator (model SISO3) certified for installation in zone 2. An ISAS3 sensor can be mounted in atmosphere or submerged, e.g. in water or crude oil. It is supported by mounting tools for temporary (magnets) or permanent (welded) installation. ISAFE3 supports automatic sensor coupling test and can be used with any AE signal processor supporting 28V supply at 90 mA peak, e.g. Vallen Systeme ASIP-2/A.
>

YXLON Cougar EVO

Scalable small footprint X-ray inspection systems for assembly and laboratory applications. The
...
YXLON Cougar EVO series was designed to provide the "best-in- class" inspection solutions for SMT, semiconductor, and laboratory assembly applications, while maintaining a small system footprint for maximum convenience. With optimized software and hardware, these systems produce higher quality and more consistent results than other electronics inspection systems currently on the market.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window