where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
359 views
Technical Discussions
Terry Oldberg
Engineering, Mechanical Electrical Nuclear Software
Consultant, USA, Joined Oct 1999, 42

Terry Oldberg

Engineering, Mechanical Electrical Nuclear Software
Consultant,
USA,
Joined Oct 1999
42
09:35 Oct-17-1999
Violations of probability theory in PISC III

The flaw finding methods of NDT violate an axiom of probability theory in relation to claims about their reliability (see http://www.ndt.net/article/v04n05/oldberg/oldberg.htm ). These violations tend to be extremely large, making this kind of NDT nearly opaque to scientific investigation.

Nonetheless, a number of studies have attempted to investigate this kind of NDT scientifically and to make probabilistic claims about the reliability. One of these attempts is reported in "Final Results of the PISC III Round Robin Test on Steam Generator Tube Inspection," (see http://www.ndt.net/article/v04n10/bieth/bieth.htm ).

In order for probability theory to be preserved by a test, it is necessary that 1) the test defines a set of true positives, false positives, true negatives and false negatives (set #1) , and 2) the test defines a set of sampling units (set #2), and 3) set #1 relates one-to-one to set #2. However, procedures for the inspection of steam generator tubes define neither set #1 nor set #2.

Theauthors of "Final Results of the PISC III Round Robin..." must have proceeded by attempting to fill in the information that was missing from the testing procedures. However, their report identifies neither set #1 nor set #2. This feature of the report hinders the reader's ability to determine how the study's violations of probability theory are manifest.

One gathers that set #2 is supposed to be the set of flaws, that a true positive is generated if a flaw is proximate to an indication and that a false negative is generated if a flaw is not proximate to an indication. One also gathers that set #1 is supposed to be the set of true positives and false negatives. This cannot be true, however, for the true negatives and false positives are missing from set #1 while the associated sampling units are missing from set #2. That these items are missing is evidently one of the ways in which the study manifests violations of probaility theory.

Does the set of true positives and false negatives relate one-to-one to the set of flaws? If so, the study's "Flaw Detection Probability" is, a probability. Otherwise, it is not.

The authors do not the address the question of whether the relationship is one-to-one explicitly. However, the nature of materials is not conducive to a one-to-one relationship, for the density of flaws is great and thus, if an indication is proximate to one flaw it is apt to be proximate to a great many flaws.

If the relationship is one-to-many, it can be made on-to-one through the worst case assumption that it is the smallest of the proximate flaws that has been detected or the best case assumption that it is the largest of the proximate flaws but as either assumption is value-laden, to impose it on a theory of the reliability would be to place this theory outside the bounds of science. That the report's probability of detection rises to 1 for large flaws implies that, if they have made one or the other of the assumptions, the authors have made the best case assumption.



 
 Reply 
 

Product Spotlight

FMC/TFM

Next generation for Phased Array UT is here now with FMC/TFM! Have higher resolution imaging, impr
...
oved signal to noise ratio, characterize, size and analyze defects better with access to several wave mode views and save raw FMC data for higher quality analysis.  Some of the benefits are:
  • Beautiful Image! Easier to understand what you're looking at
  • Completely focused in entire image or volume
  • Much easier to define setups before inspection
  • Easier to decipher geometry echoes from real defects
  • Oriented defects (e.g. cracks) are imaged better
  • See image from different wave modes from one FMC inspection
  • FMC data can be reprocessed/analyzed without going back to the field
>

NovaScope 6000

The all-digital Novascope 6000 is a portable, ultra-high precision thickness gauge for high-speed
...
thickness measurement. Novascope 6000 has unmatched capabilities and unique features including: •Superior Resolution with high contrast, high-speed color RF display •High pulser voltage •Real-time video output •Increased internal/external data storage •Programmable SetUp features •Battery & AC Powered
>

AIS229 - Multipurpose Real Time System

Latest standard & automatic real time system developed by Balteau. The AIS229 has been designed to
...
do series inspection in a wide variety of industry. Composed of a shielded cabinet, 5 axis manipulator, x-ray generator and tubehead from 160kV to 225kV, a fl at panel & much more, the AIS229 is most certainly one of the most multipurpose RTR system available on the market.
>

Varex Imaging Large Field of View (FOV) Digital Detector Arrays (DDAs)

A larger FOV DDA can reduce the space and volume of the X-ray inspection system on the factory floor
...
, enable faster scanning times, better throughput and better resolution images at a lower dose. Customers can also save time and money. With these benefits in mind, Varex Imaging has designed a family of large FOV detectors (4343HE, XRD 1611, 4343DX-I, 4343CT) for our industrial imaging customers.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window