where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
271 views
Technical Discussions
Edouard G. Nesvijski
Edouard G. Nesvijski
03:52 Aug-13-1998
Pelly's questions

In reply to Pelly’s questions regarding waves in a thin plate I would like to make some comments that may considerably differ from the traditionally accepted theory.
But first of all
What do you mean by “plate”? Is it a really very thin plate or is it a thin layer on a base? We have several different problems here.

Regarding Lamb waves.
If the plate serves as a structural element its minimal thickness (or thinness) is always limited by stiffness of the structure. That is why if the ultrasonic wavelength corresponds to the plate’s thickness, we have two groups of Lamb waves: symmetric and asymmetric. They differ by phase and group velocity, spread of shifts and stresses along the plate thickness. Each of the Lamb wave groups represents a family of different wave modes depending on their frequency. High dispersion of velocity is observed here. According to my physical notion these groups are complex configurations of longitudinal and shear stresses caused by special boarder conditions of the plate. In this case it is impossible to separate them. Then there are no pure longitudinal or shear Lamb waves. Sometimes for very thin plates it is possible to consider only the first modes of symmetric and asymmetric waves, but it is an artificial approach convenient for theoretical modeling. In reality we use ultrasonic impulses for materials testing which theoretically have unlimited spectrum of frequencies. Practically the spectrum is limited only by transducer frequency bands and equipment measuring possibilities (relation of noise to threshold levels). This uncertainty characteristic of the ultrasonic pulse method is one of the main difficulties of measuring the Lamb wave parameters.
Regarding transducers.
There are different angles of inducing ultrasonic impulses into the material according to Snell law, but this critical angle exists only for one fixed frequency. Impulse signal, as a rule, has a wide frequency spectrum. I do not know a technical solution for getting critical angles for all the spectrum components! Transducer design also affects testing in this case. Traditionally plate (with liquid couplant) contact transducers or air couplant or dry point contact transducers generate stresses in the plate with different directional diagrams, thus different spectrums of pulse ultrasonic waves.
Regarding measurements.
It is necessary to remember that theoretically we consider only models of the waves, where we use notions of only phase or group velocities. As far as I know, the existing ultrasonic equipment do not measure these parameters in a pure form. It is very strange that this problem seems to be ignored. Do we know what we are measuring?
I welcome any discussion and comments for searching the truth.
Good luck, Pelly, but keep in mind that your road is full of stones and lambs.

Regards,
Edouard


 
 Reply 
 

Product Spotlight

NDTkit RT

NDTkit RT, TESTIA's Digital Radiography software The NDTkit product line software for X-ray analysi
...
s. NDTkit RT is a software benefiting from the Ultis kernel which is dedicated to radiographic image analysis. It offers a set of tools and filtering processes to assist RT operators in finding relevant flaws.
>

GUL QSR1® Scanning

How do you measure pipe wall thickness without direct access to the area? QSR® Scanning - Guide Wav
...
e Quantitative Short Range Scanning.
>

EKOSCAN Phased Array

In order to always fit your needs, EKOSCAN can manufacture any type of UT transducer, either convent
...
ional or Phased Array. As an ISO 9001: 2015 certified company, EKOSCAN is extremely careful as far a material selection and manufacturing processes are concerned. Our probes guarantee our customers the benefits of latest innovations regarding piezo-composite, backing, impedance adaptation layer, etc. Specific probes for hostile environment: high temperature, high pressure, corrosive environment,etc. Specific probes designed to fit your specific application: optimization of every parameter to guarantee you the best detection.
>

Echomac® Small

Available with up to eight channels of electronics to detect and evaluate thickness, flaws and eccen
...
tricity, this UT tester is housed in a convenient, smaller cabinet. This instrument can be used in conjunction with bubbler or immersion tank systems, or with a test bench or in laboratory applications. The Echomac® Small is available in the FD4, FD6 or FD6A versions.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window