where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

Acoustic Emission Consulting, Inc.
Acoustic Emission Consulting, Inc. specializes in the design of small portable AE instruments for field and lab use.
334 views
Technical Discussions
Ricki
Ricki
18:06 May-18-2009
Appropriate laser wavelength for propagating solitons

I am currently doing research on propagation and detection of solitons using a pulsed laser source. The propagation is based on the material's response to thermoelastic stresses caused by the laser pulse's rapid heating of the material.
My question concerns the appropriate wavelength to be used for such an experiment. I have been unable to find any research papers or journal articles justifying the best wavelength to use. The papers usually just state which wavelength was used in the experiment but do indeed state the appropriate energy. I need to know if the choice of wavelength is arbitrary, or is there a specific range?

 
 Reply 
 
Mark
Mark
10:47 May-19-2009
Re: Appropriate laser wavelength for propagating solitons
In Reply to Ricki at 18:06 May-18-2009 (Opening).

I am not the most experienced at this, but I'm sure at least one thing you will need to take into account is the reflectivity as a function of wavelength of your material. Since you want to work in the thermoelastic regime you will want a wavelength where absorption is high/ reflection is low, and also a relatively low energy density (you may want to deliberately de-focus or attenuate your laser beam, to avoid working in the plasma regime).

I think in the case of metals, infra red wavelengths are used for plasma-regime ultrasound because the metals reflect strongly at these wavelengths leading to effectively double energy density just above the metal surface, hence plasma formation. Therefore shorter wavelengths would be better for thermoelastic work.

Mark.

 
 Reply 
 

Product Spotlight

NovaScope 6000

The all-digital Novascope 6000 is a portable, ultra-high precision thickness gauge for high-speed
...
thickness measurement. Novascope 6000 has unmatched capabilities and unique features including: •Superior Resolution with high contrast, high-speed color RF display •High pulser voltage •Real-time video output •Increased internal/external data storage •Programmable SetUp features •Battery & AC Powered
>

CIVA 2020 UT Module

CIVA NDE Simulation Software is the world leader of NDT Simulation. The UT simulation Module incl
...
udes: - "Beam computation": Beam propagation simulation - "Inspection Simulation": Beam interaction with flaws or specimens The user can simulate a whole inspection process (pulse echo, tandem or TOFD) with a wide range of probes (conventional, Phased- arrays or EMAT), components, and flaws.
>

Immersion systems

ScanMaster ultrasonic immersion systems are designed for high throughput, multi shift operation in a
...
n industrial or lab environment. These fully integrated systems provide various scanning configurations and incorporate conventional and phased arrays technologies to support diverse applications, such as inspection of disks, bars, shafts, billets and plates. All of ScanMaster immersion systems are built from high accuracy scanning frames allowing for scanning of complex parts and include a multi-channel ultrasonic instrument with exceptional performance. The systems are approved by all major manufacturers for C-scan inspection of jet engine forged discs. Together with a comprehensive set of software modules these flexible series of systems provide the customer with the best price performance solutions.
>

Lyft™: Pulsed Eddy Current Reinvented

PEC Reinvented—CUI Programs Redefined Corrosion under insulation (CUI) is possibly the greatest u
...
nresolved asset integrity problem in the industry. Current methods for measuring wall thickness with liftoff, without removing insulation, all have severe limitations. Eddyfi introduces Lyft — a reinvented, high-performance pulsed eddy current (PEC) solution. The patent- pending system features a state-of-the-art portable instrument, real- time C-scan imaging, fast data acquisition with grid-mapping and dynamic scanning modes, and flexibility with long cables. It can also scan through thick metal and insulation, as well as aluminum, stainless steel, and galvanized steel weather jackets. Who else but Eddyfi to reinvent an eddy current technique and redefine CUI programs. Got Lyft?
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window