where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

905 views
Technical Discussions
talortang
talortang
05:58 Jun-01-2009
direction control of guided waves

Could anybody help me solve the problem with direction control of guided waves?

In my research, I need to control guided waves, torsional waves, to propagate in a single direction, that is unidirectional propagation, I know that it can be carried out when arranging two coils which have an interval of 1/4 wavelength of guided waves, but I can't get detailed information about it, especially electrocircuit design such as phase shift circuit.

I have searched for many ariticles, but rarely related information could be gotten, can anybody help me solve this problem? or advise some articles?

Thank you!

 
 Reply 
 
Sang Kim
Consultant, NDT Trainer
Guided Wave Analysis LLC, USA, Joined Feb 2008, 44

Sang Kim

Consultant, NDT Trainer
Guided Wave Analysis LLC,
USA,
Joined Feb 2008
44
23:59 Jun-02-2009
Re: direction control of guided waves
In Reply to talortang at 05:58 Jun-01-2009 (Opening).

You can do direction control of guided wave with two or multiple probes and time-delaying circuit. Follow this procedure for controlling the direction of guided wave:
1) Find the velocity of torsional wave mode in the applied material; The torsional mode velocity is about 3250 m/sec in steel. The fundamental torsional mode velocity is the same to shear wave velocity of the material.
2) Decide the operating frequency of your wave such as 128 kHz.
3) Calculate the wavelength with the velocity and frequency. In this example, it is about 1 inch.
4) Calculate ¼ of wavelength of the wave. It is 0.25 inch.
5) Install two probes in 0.25 inch of center-to-center separation
6) For transmitting the guided wave, make electric circuit so that the transmitters trigger the high-power electric currents with a delay of ¼ period to each other. In this example, 1/(4*128000) sec
7) For receiving the guided wave, make electric circuit that can add the two signals after delaying ¼ of period from each other.
8) For good direction control, you need two transmitters and two receivers.
9) If you use multiple probes, you will have better direction-controlled signal.

If you need simple test in the lab for a paper, try to use one probe that is bonded at ¼ wavelength separation (The center of probe should be ¼ wavelength separation from the edge of specimen) from the end of specimen such as pipe or plate. Then you will have perfect direction-controlled signal with only one channel equipment.

For more information about long-range ultrasonic testing (LRUT) using guided wave, please refer to this website (www.gwanalysis.com) or email me.

Sang

 
 Reply 
 
talortang
talortang
10:46 Jun-08-2009
Re: direction control of guided waves
In Reply to Sang Kim at 23:59 Jun-02-2009 .

Thanks! I don't need simple test in the lab for a paper, but long time and deeply research for controlling the direction of guided wave.
I have known the procedure for controlling the direction of guided wave, and I have painted the figures of vibration of two particles in one period ,which stand for two transmite coils bonded at 1/4 wavelength separation and delaying 1/4 of period from each other.
But unfortunately, I don't know how to upload the figures to forum, so, I have to e-mail to you with the figures.
I have two problems with the procedure.
1)when the vibration direction of two particles ,which stand for two probes installed at 1/4 wavelength of center-to-center separation, are the same or the converse, we get different results when two waves compound,as the figures show. which one should I choose? It seems that we can get pure direction-controlling when the vibration direction of two particles are the converse,but the amplitude of first half-period wave is half of the amplitude of second half-period wave, this wave may affect our test result. However, we can't get ture direction-controlling when vibration direction of two particles are the same. In one direction, we get half-period wave; in another direction, we get one period wave, which amplitude is two times as the half-period wave.
So, should I choose the converse one? Then how to avoid the affect as a result of different amplitude of the first half-period and the second half-period? or whether it will affect the test result?
2)for good direction contorl, I know two transitters are necessary, but why we need two receivers, too? when we use two transitters installed as you said in your message, we can control guided waves to propagate in a single direction, then receiving the single-dierction guided waves, one receiver is enough, why do we need two receivers? You said it is for good direction control, could you explain it in details?

 
 Reply 
 

Product Spotlight

MUSE Mobile Ultrasonic Equipment

The MUSE, a portable ultrasonic imaging system, was developed for in-field inspections of light-weig
...
ht structures. The MUSE consists of a motor-driven manipulator, a water circulation system for the acoustic coupling and a portable ultrasonic flaw detector (USPC 3010). The MUSE provides images of internal defects (A-, B-,C- and D-scan).
>

NOVO Armor 15 & NOVO Armor 22

The Armor Kit Contains the NOVO Armor, which provides additional mechanical protection to the NOVO 1
...
5WN & NOVO 22WN Detectors, the Armor Stand and a traveling soft cover. - Newest shock absorbent technology case - Water resistant design - Supports wired & wireless communication - Multiple positioning options - Tripod connection using the Built-in 1/4” threads - Simple Detector battery replacement
>

VeeScan AirCraft Wheel Inspection

The VEESCAN offers maximum flexibility, has a proven mechanical design and records of breakdown-fr
...
ee operation of over 365 days. Appealing to companies in the Aerospace industry, the VEESCAN is ideal for all wheel-testing environments. With a wide selection of probes, the VeeScan allows your wheel testing facility the flexibility to select the most compatible configurations with their workload.
>

OPBOX with standard software is able to do all types of inspections and measurements: flaw detection in welds and materials, scanning of objects, testing composite materials, forged and moulded pieces, many UT inspections, measurements of properties of ma

Typical applications: UT measurements with pulse technique, Measurement of thicknesses also at hig
...
h temperatures, Measurements of properties of materials, including fluids and gases We are delivering a standard version of the software (for any Microsoft Windows up to 10 x64 with Microsoft Hardware certification report Approved) and for special needs: SDK with ready to use examples for LabView, MATLAB x64, C++ wrapper for dll, Python and Linux., and also low-level description of how to control our devices directly from any USB tools
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window