where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

Technical Discussions
Dipl.-Ing. Martin Heinz
Dipl.-Ing. Martin Heinz
07:20 Jul-22-2004
Calculation of the focus-width of a focused ultrasonic transducer

The focus depth of a lens-focused transducer is easily to calculate by the lens formula of the geometric optic. If we use the trigonometry we can calculate the focus-range (depending from aperture) using the formula F = R*(1 + 1/(squareroot((CLens*CLens)/(CMed*CMed)-(A*A)/(4*R*R))-squareroot(1-(A*A)/(4*R*R))), where R is the lens radius, A the aperture, F, the focus, CMed the longitudinal speed of sound in the medium and CLens the longitudinal speed of sound in the acoustic lens. If we calculate F for the border "sound beam" (at A) and F for the middle "sound beam" we get the focus range. For R >> A we get the common known lens formula and a single focus point.
But how can be calculated the sound beam width within the focus? I know from literature, that the focus area has a elliptic form. But I did not find a formular for calculating the beam width within the focus range of a lens-focused transducer. Does anyone know any paper containing the calculation of the elliptic focus zone and the way to get this calculation?


Product Spotlight

GUL Subsea Solutions - Screeening & Monitoring

To inspect new and existing subsea lines, you need proven technology and experience. GUL offers it's
technology to solve this challenge: GUL Subsea and gMAT Transducer Rings.

AIS229 - Multipurpose Real Time System

Latest standard & automatic real time system developed by Balteau. The AIS229 has been designed to
do series inspection in a wide variety of industry. Composed of a shielded cabinet, 5 axis manipulator, x-ray generator and tubehead from 160kV to 225kV, a fl at panel & much more, the AIS229 is most certainly one of the most multipurpose RTR system available on the market.


Pulse thermography is a non-contact test method that is ideal for the characterization of thin fil
ms and coatings or the detection of defects. With a remarquable short test time and a high detection sensitivity, the Telops TESTD-PT is the perfect tool for non- destructive testing. With such high frame rates, it is even possible to investigate highly conductive or diffusive materials.

UCI Hardness Tester NOVOTEST T-U2

UCI hardness tester NOVOTEST T-U2 is is used for non-destructive hardness testing of: metals and
alloys by scales of hardness: Rockwell (HRC), Brinell (HB), Vickers (HV); non-ferrous metals, alloys of iron etc., and using five additional scales for calibration; with tensile strength (Rm) scale determines the tensile strength of carbon steel pearlitic products by automatic recalculation from Brinell (HB) hardness scale.

We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
this is debug window