where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

TecScan Systems
We offer a complete line of NDT scanners, Immersion Tanks & Gantry systems which incorporate Ultrasonic, Phased Array & Eddy Current technologies.

1118 views
Technical Discussions
C Truskolasky
Test Examiner Mil-2132, Level III
Lehigh Heavy Forge, USA, Joined Jan 2007, 10

C Truskolasky

Test Examiner Mil-2132, Level III
Lehigh Heavy Forge,
USA,
Joined Jan 2007
10
01:28 Feb-27-2007
Panametric 1/4 x 1 Transducer

Does anyone have the near field depth for the Panametric 2.25MHz .25" x 1" Accuscan A1004.1 transducer?


    
 
 
Tom Nelligan
Engineering,
retired, USA, Joined Nov 1998, 390

Tom Nelligan

Engineering,
retired,
USA,
Joined Nov 1998
390
08:56 Feb-28-2007
Re: Panametric 1/4 x 1 Transducer
The beam profile of a rectangular transducer is complex because near field length and beam spread angle will effectively be different across the long and short dimensions, and the actual sound pressure profile represents a combination of those effects. You can find a full discussion of the relevant physics in chapter 4.5 of the textbook "Ultrasonic Testing of Materials" by Krautkramer & Krautkramer.


----------- Start Original Message -----------
: Does anyone have the near field depth for the Panametric 2.25MHz .25" x 1" Accuscan A1004.1 transducer?
------------ End Original Message ------------




    
 
 
CTruskolasky
Test Examiner Mil-2132, Level III
Lehigh Heavy Forge, USA, Joined Jan 2007, 10

CTruskolasky

Test Examiner Mil-2132, Level III
Lehigh Heavy Forge,
USA,
Joined Jan 2007
10
09:27 Mar-01-2007
Re: Panametric 1/4 x 1 Transducer
----------- Start Original Message -----------
: Does anyone have the near field depth for the Panametric 2.25MHz .25" x 1" Accuscan A1004.1 transducer?
------------ End Original Message ------------

I had already used the Krautkramer text and ended up with various/skeptical results. I settled on the formula given in Table 6-1 of the "Phased Array Technical Guidelines", published by R/D Tech. It uses a correction factor based on the ratio of the width/length of the crystal. The .25 ratio results in a correction factor of .99 found in the graph of figure 6-1 of the same text. The near field length calculates to 61mm, (2.4-in) which is approx. the same for a 25mm (1.0-in)circular crystal. I was hoping someone would have already experimentally measured this value.


    
 
 
John Brunk
Engineering, NDT Level III
Self employed, part-time, USA, Joined Oct 1999, 159

John Brunk

Engineering, NDT Level III
Self employed, part-time,
USA,
Joined Oct 1999
159
02:48 Mar-02-2007
Re: Panametric 1/4 x 1 Transducer
----------- Start Original Message -----------
: : Does anyone have the near field depth for the Panametric 2.25MHz .25" x 1" Accuscan A1004.1 transducer?
: I had already used the Krautkramer text and ended up with various/skeptical results. I settled on the formula given in Table 6-1 of the "Phased Array Technical Guidelines", published by R/D Tech. It uses a correction factor based on the ratio of the width/length of the crystal. The .25 ratio results in a correction factor of .99 found in the graph of figure 6-1 of the same text. The near field length calculates to 61mm, (2.4-in) which is approx. the same for a 25mm (1.0-in)circular crystal. I was hoping someone would have already experimentally measured this value.
------------ End Original Message ------------

Any calculation of near field length assumes that the transducer operates at a single frequency, and this is never the case. An actual experimental measurement would seem to be the right thing to do. However, the results would applystrictly only to that particular transducer and ultrasonic instrument. Any manufacturer's "transducer characterization" will apply only to the particular transducer and the equipment and target used. If you look at these cahracterizations for a group of transducers having the same part number, each will be a little different from all the others. Pulser type and settings will have some effect on the output spectrum, and the bandwidth characteristics of the receiver will also impact the observed near field. I wonder why you would believe you need an exact near field length. It seems to me that there is no such thing in real life.



    
 
 
C Truskolasky
Test Examiner Mil-2132, Level III
Lehigh Heavy Forge, USA, Joined Jan 2007, 10

C Truskolasky

Test Examiner Mil-2132, Level III
Lehigh Heavy Forge,
USA,
Joined Jan 2007
10
03:46 Mar-04-2007
Re: Panametric 1/4 x 1 Transducer
----------- Start Original Message -----------
: : : Does anyone have the near field depth for the Panametric 2.25MHz .25" x 1" Accuscan A1004.1 transducer?
: : I had already used the Krautkramer text and ended up with various/skeptical results. I settled on the formula given in Table 6-1 of the "Phased Array Technical Guidelines", published by R/D Tech. It uses a correction factor based on the ratio of the width/length of the crystal. The .25 ratio results in a correction factor of .99 found in the graph of figure 6-1 of the same text. The near field length calculates to 61mm, (2.4-in) which is approx. the same for a 25mm (1.0-in)circular crystal. I was hoping someone would have already experimentally measured this value.
: Any calculation of near field length assumes that the transducer operates at a single frequency, and this is never the case. An actual experimental measurement would seem to be the right thing to do. However, the results would apply strictly only to that particular transducer and ultrasonic instrument. Any manufacturer's "transducer characterization" will apply only to the particular transducer and the equipment and target used. If you look at these cahracterizations for a group of transducers having the same part number, each will be a little different from all the others. Pulser type and settings will have some effect on the output spectrum, and the bandwidth characteristics of the receiver will also impact the observed near field. I wonder why you would believe you need an exact near field length. It seems to me that there is no such thing in real life.
------------ End Original Message ------------

I'm not looking for an exact length for the near field but just a good approximation. I'm attempting to make an AVG/DGS chart for this transducer.


    
 
 

Product Spotlight

AMIGO2

TSC Amigo2 - ACFM technology has developed a solid reputation for accurately detecting and sizing
...
surface-breaking cracks through paint and coatings. As the industry demands increased performance in speed, signal quality, and portability, it’s time for an evolution. It’s time for Amigo2.
>

UCI Hardness Tester NOVOTEST T-U2

UCI hardness tester NOVOTEST T-U2 is is used for non-destructive hardness testing of: metals and
...
alloys by scales of hardness: Rockwell (HRC), Brinell (HB), Vickers (HV); non-ferrous metals, alloys of iron etc., and using five additional scales for calibration; with tensile strength (Rm) scale determines the tensile strength of carbon steel pearlitic products by automatic recalculation from Brinell (HB) hardness scale.
>

AIS229 - Multipurpose Real Time System

Latest standard & automatic real time system developed by Balteau. The AIS229 has been designed to
...
do series inspection in a wide variety of industry. Composed of a shielded cabinet, 5 axis manipulator, x-ray generator and tubehead from 160kV to 225kV, a fl at panel & much more, the AIS229 is most certainly one of the most multipurpose RTR system available on the market.
>

HARDNESS TESTER TKM-459CE combi

TKM-459CE combi applies 2 methods of hardness control: UCI and Leeb. It provides high-accuracy tes
...
ting of metals and alloys as well as items of different sizes and configurations, their hardened layers and galvanic coatings. Device represents results in HB, HRC, HV and others. Shock-, dust- and water-proof housing with intuitive software make this gauge easy to use in all working conditions.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window