where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -

KARL DEUTSCH
INSTRUMENTS AND SYSTEMS FOR NON-DESTRUCTIVE TESTING OF MATERIALS.

965 views
Technical Discussions
Yung-how wu
Yung-how wu
09:42 Jul-13-2007
CHIME technique

Recently, when I reviewed the paper of CHIME published at http://www.ndt.net/article/ecndt98/chemical/103/103.htm, I was confused by some description of the technique .

According to the paper, the second part of wave train, which signal amplitudes are higher than the first part, came from direct reflections of bulk wave in different multiple skips. The paper didn't clearly describe what the bulk wave is but just mentioned that there were waves "generated below or above the critical angle due to the beam divergence of a finite width transducer." I assumed it the shear wave, but not Head wave, accompanied with the 90 degree Longitudinal wave of the Creeping wave probe.

Since the latter part of wave train are higher in amplitude, it seemed more useful and reliable than the first part of wave train come from Creeping/Head wave combinations. In this case, I will have wave train similar with the second part if I used a conventional shear wave probe of same incident angle.

Then, my question is:
What isthe benifit of CHIME technique though the paper did also mention that "the Head waves are non-divergent plane waves therefore they have little decay and show strong peaks in the latter half of the signal."

Can anyone answer and confirm if the second part of the wavetrain in CHIME are generated by the shear wave generated by creeping probe and, is similar with conventional shear probe.



    
 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1236

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1236
05:33 Jul-13-2007
Re: CHIME technique

Mr. Wu, you asked if anyone can confirm if the second part of the wavetrain in CHIME are generated by the shear wave generated by creeping probe and, is similar with conventional shear probe.
The image in Figure 1 of the referenced paper shows the 2 arcs that are the main features of the bulk shear wave and how they are connected to the surface-glancing compression wave by the shear headwave. However, the image in that Figure 1 seems to give the impression that the headwave has a very strong amplitude. I have attached a photo from a photoelastic imaging of a so-called creeping wave probe. This illustrates the same modes as predicted by the finite element modelling that was used to image the Figure 1 in the referenced article. But this photo shows the headwave to be weaker than the bulk shear wave. This seems to make sense when we follow the transmission coeeficient curves for the shear mode. These indicate a higher transmission just after the critical angle.
However, the shear bulk wave is divergent (follows Snell's Law and spreads spherically) whereas the headwave from a flat plane surface is forming continuous plane wavefront. This ensures a full volume coverage in the early part of the soundpath whereas the spherical bulk shearwave will have reduced volume coverage in the same region.
The effect of a multiskip shear mode will be "similar" in that multiple arrivals will be seen (some of these from mode conversions).

Regards
Ed

----------- Start Original Message -----------
: Recently, when I reviewed the paper of CHIME published at http://www.ndt.net/article/ecndt98/chemical/103/103.htm, I was confused by some description of the technique .
: According to the paper, the second part of wave train, which signal amplitudes are higher than the first part, came from direct reflections of bulk wave in different multiple skips. The paper didn't clearly describe what the bulk wave is but just mentioned that there were waves "generated below or above the critical angle due to the beam divergence of a finite width transducer." I assumed it the shear wave, but not Head wave, accompanied with the 90 degree Longitudinal wave of the Creeping wave probe.
: Since the latter part of wave train are higher in amplitude, it seemed more useful and reliable than the first part of wave train come from Creeping/Head wave combinations. In this case, I will have wave train similar with the second part if I used a conventional shear wave probe of same incident angle.
: Then, my question is:
: What is the benifit of CHIME technique though the paper did also mention that "the Head waves are non-divergent plane waves therefore they have little decay and show strong peaks in the latter half of the signal."
: Can anyone answer and confirm if the second part of the wavetrain in CHIME are generated by the shear wave generated by creeping probe and, is similar with conventional shear probe.
:
------------ End Original Message ------------




    
 
 

Product Spotlight

TOPAZ® 64: Fully Integrated Portable 64 Channel PAUT Instrument with FMC & TFM

Introducing TOPAZ64, the industry’s most intelligent fully integrated, portable 64-channel phased
...
array ultrasound (UT) instrument. TOPAZ64 combines code-compliant phased array UT with the industry’s most advanced full matrix capture (FMC) and total focusing method (TFM) capabilities. Featuring the highest acquisition frequency in its class, high resolution FMC and a 12” multi-touchscreen, users can easily visualize even the smallest flaws. TOPAZ64 can generate a bipolar pulse that provides more acoustic energy versus previous models for punching through thick components. The result is a portable tool that delivers increased inspection coverage, more accurate signals, and the ability to handle all UT inspections in one package. TOPAZ64 is ideal for challenging applications in transportation, oil and gas, manufacturing and power generation.
>

Navic - Steerable Modular Automated Scanner

The Navic is a modular, motorized, steerable scanner designed to carry multiple attachments used
...
in various scanning and inspection applications. The Navic is capable of weld scanning (girth welds and long seam welds), automated corrosion mapping, and tank scanning.
>

XRHRobotStar

In high volume industries like automotive the requirement for a hundred percent X-ray inspection c
...
reates a bottleneck in the production. The XRHRobotStar is a fully Automated Defect Recognition (ADR) capable robot-system that allows an ultra-fast in-line inspection.
>

High-end Ultrasonic Flaw Detector with 32:128PR PAUT and 2-ch TOFD: SyncScan 2

SIUI’s newly launched SyncScan 2, is a high-end ultrasonic flaw detector with 32:128PR PAUT and
...
2-ch TOFD, which can maximize your efficiency for PA and TOFD. ● Support PA/TOFD/UT ● 32-ch PA is more suitable for inspection on extra-thick wall and high-attenuation material. ● 32-ch PA and 2-ch TOFD work simultaneously. ● Support PR mode for corrosion inspection.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window