where expertise comes together - since 1996 -

The Largest Open Access Portal of Nondestructive Testing (NDT)

Conference Proceedings, Articles, News, Exhibition, Forum, Network and more

where expertise comes together
- since 1996 -
1037 views
Technical Discussions
sentho
sentho
01:30 Jul-25-2007
coverage for TOFD

I noticed that every TOFD inspection miss some datas from the upper wall thickness(approximately 1/3 T). how can we get a better quality signals from the laterwave side.


 
 Reply 
 
Ed Ginzel
R & D, -
Materials Research Institute, Canada, Joined Nov 1998, 1286

Ed Ginzel

R & D, -
Materials Research Institute,
Canada,
Joined Nov 1998
1286
03:11 Jul-25-2007
Re: coverage for TOFD
----------- Start Original Message -----------
: I noticed that every TOFD inspection miss some datas from the upper wall thickness(approximately 1/3 T). how can we get a better quality signals from the laterwave side.
------------ End Original Message ------------
The "missed data" would be the dead zone. This is not actually a function of the wall thickness but instead, the ring time equivalent depth of the pulse. Frequency, probe spacing and angle used can all be factors. A simple calculator is provided as a download on NDT.net to estimate the Dead Zone heights associated with TOFD setups. Go to http://www.ndt.net/article/v10n06/ginzel/ginzel.htm
For it to be 1/3 wall thickness the specimen you are working with is probably very thin.


 
 Reply 
 
sentho
sentho
05:54 Jul-29-2007
Re: coverage for TOFD
- The "missed data" would be the dead zone.-his is from your replay. How it happents? We are using one probe as transmitter and the other is a receiver.--------- Start Original Message -----------
: : I noticed that every TOFD inspection miss some datas from the upper wall thickness(approximately 1/3 T). how can we get a better quality signals from the laterwave side.
: The "missed data" would be the dead zone. This is not actually a function of the wall thickness but instead, the ring time equivalent depth of the pulse. Frequency, probe spacing and angle used can all be factors. A simple calculator is provided as a download on NDT.net to estimate the Dead Zone heights associated with TOFD setups. Go to http://www.ndt.net/article/v10n06/ginzel/ginzel.htm
: For it to be 1/3 wall thickness the specimen you are working with is probably very thin.
------------ End Original Message ------------




 
 Reply 
 
Nigel Armstrong
Engineering, - Specialist services
United Kingdom, Joined Oct 2000, 1096

Nigel Armstrong

Engineering, - Specialist services
United Kingdom,
Joined Oct 2000
1096
02:31 Jul-29-2007
Re: coverage for TOFD
Sentho

The dead zone which Ed is refering to is not of the same origin as the dead zone with the single crystal pulse-echo technique which is a characteristic of the transducer vibration. The TOFD dead zone is caused by the surface or lateral wave travelling from the transmitting to the receiving probe. Any near-surface diffracted signals will be swamped by the lateral wave.

Regards

Nigel


---------- Start Original Message -----------
: - The "missed data" would be the dead zone.-his is from your replay. How it happents? We are using one probe as transmitter and the other is a receiver.--------- Start Original Message -----------
: : : I noticed that every TOFD inspection miss some datas from the upper wall thickness(approximately 1/3 T). how can we get a better quality signals from the laterwave side.
: : The "missed data" would be the dead zone. This is not actually a function of the wall thickness but instead, the ring time equivalent depth of the pulse. Frequency, probe spacing andangle used can all be factors. A simple calculator is provided as a download on NDT.net to estimate the Dead Zone heights associated with TOFD setups. Go to http://www.ndt.net/article/v10n06/ginzel/ginzel.htm
: : For it to be 1/3 wall thickness the specimen you are working with is probably very thin.
------------ End Original Message ------------




 
 Reply 
 

Product Spotlight

GEKKO - Portable Phased Array Testing with TFM in Real-Time

The portable phased array testing system GEKKO provides 64 parallel test channels. On creating testi
...
ng parameters the operator is assisted by the CIVA software. Due to its modular set-up the GEKKO instrument is suitable for operators of all skill levels.
>

TraiNDE UT

TraiNDE UT is a virtual tool associated with a signal database which simulates real inspection con
...
ditions for numerous applications (Type A/V1 block, DAC block, welds and plates).
>

AIS229 - Multipurpose Real Time System

Latest standard & automatic real time system developed by Balteau. The AIS229 has been designed to
...
do series inspection in a wide variety of industry. Composed of a shielded cabinet, 5 axis manipulator, x-ray generator and tubehead from 160kV to 225kV, a fl at panel & much more, the AIS229 is most certainly one of the most multipurpose RTR system available on the market.
>

NEOS III

NEOS III is Logos Imagings lightest DR system. With a built-in battery and internal wireless commu
...
nication, the NEOS III is perfect for users that want to quickly assess an item.
>

Share...
We use technical and analytics cookies to ensure that we will give you the best experience of our website - More Info
Accept
top
this is debug window